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Abstract

Sparsity-constrained optimization has wide applicability in machine learning, statistics,

and signal processing problems such as feature selection and Compressive Sensing. A vast

body of work has studied the sparsity-constrained optimization from theoretical, algorith-

mic, and application aspects in the context of sparse estimation in linear models where the

fidelity of the estimate is measured by the squared error. In contrast, relatively less effort

has been made in the study of sparsity-constrained optimization in cases where nonlin-

ear models are involved or the cost function is not quadratic. We propose a greedy algo-

rithm, Gradient Support Pursuit (GraSP), to approximate sparse minima of cost functions

of arbitrary form. Should the cost function have a “well-behaved” second order variation

over the sparse subspaces, we show that our algorithm is guaranteed to produce a sparse

vector within a bounded distance from the true sparse optimum. Our approach general-

izes known results for quadratic cost functions that arise in sparse linear regression and

Compressed Sensing. We also evaluate the performance of GraSP through numerical sim-

ulations on synthetic and real data, where the algorithm is employed for sparse logistic

regression with and without `2-regularization. We also formulate the 1-bit Compressed

Sensing problem as a sparsity-constrained optimization with non-quadratic objective. We

show through numerical simulations that the GraSP algorithm with slight modification

can show better performance compared to existing algorithms.

Moreover, we study the structured sparsity estimation problems that involve nonlin-

ear statistical models. Previously, several methods have been proposed for these problems
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using convex relaxation techniques. These methods usually require a carefully tuned regu-

larization parameter, often a cumbersome or heuristic exercise. Furthermore, the estimate

that these methods produce might not belong to the desired sparsity model, albeit ac-

curately approximating the true parameter. Therefore, greedy-type algorithms could be

more desirable in estimating structured-sparse parameters. So far, these greedy methods

have mostly focused on linear statistical models. We study a non-convex Projected Gra-

dient Descent (PGD) for estimation of parameters with structured sparsity. Similar to the

requirements for GraSP, if the cost function has proper second-order variation over the

structured subspaces, the PGD algorithm converges to the desired minimizer up to an

approximation error. As an example we elaborate on application of the main results to

estimation in Generalized Linear Models.

Furthermore, we study the performance of the PGD algorithm for `p-constrained least

squares problems that arise in of Compressed Sensing. Relying on the well-known Re-

stricted Isometry Property, we provide convergence guarantees for this algorithm for the

entire range of 0 ≤ p ≤ 1, that include and generalize the existing results for the Iterative

Hard Thresholding algorithm and provide a new accuracy guarantee for the Iterative Soft

Thresholding algorithm as special cases. Our results suggest that in this group of algo-

rithms, as p increases from zero to one, conditions required to guarantee accuracy become

stricter and robustness to noise deteriorates.
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Notations

[n] the set {1, 2, . . . , n} for any n ∈ N

I calligraphic letters denote sets unless stated otherwise

Ic
complement of set I

2I the set of all subsets (i.e., the powerset) of I

v bold face small letters denote column vectors

‖v‖0 the “`0-norm” of vector v that merely counts its nonzero entries1

‖v‖q the `q-norm of vector v ∈ Cb, that is,
(∑b

i=1 |vi|
q
)1/q

, for a real number

q > 0[fn:quasinorm]

v|I depending on the context: (1) restriction of vector v to the rows indicated

by indices in I, or (2) a vector that equals v except for coordinates in Ic

where it is zero

vr the best r-term approximation of vector v, unless stated otherwise

supp (v) the support set (i.e., indices of the non-zero entries) of v

M bold face capital letters denote matrices

MT,MH, M† transpose, Hermitian transpose, and pseudo-inverse of matrix M, respec-

tively

1The term “norm” is used for convenience throughout
the thesis. In fact, the `0 functional violates the positive
scalability property of the norms and the `p functionals
with p ∈ (0, 1) are merely quasi-norms.
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MI restriction of matrix M to the columns enumerated by I

‖M‖ the operator norm of matrix M which is equal to
√
λmax (MTM)

M < M′ M−M′ is positive semidefinite

I the identity matrix

PI restriction of the identity matrix to the columns indicated by I

1 column vector of all ones

E [·] expectation

∇2f (·), ∇2
If (·) The former denotes the Hessian of the function f , and the latter denotes

the the Hessian restricted to rows and columns indexed by I

(x)+ Positive part of x

Arg (x) Argument (phase) of a complex number x

< [x] Real part of a complex number x

xi



Chapter 1

Introduction

Applications that require analysis of high-dimensional data has grown significantly dur-

ing the past decade. In many of these applications, such as bioinformatics, social network-

ing, and mathematical finance, dimensionality of the data is usually much larger than the

number of samples or observations acquired. Therefore statistical inference or data pro-

cessing would be ill-posed for these underdetermined problems. Fortunately, in some appli-

cations the data is known a priori to have an underlying structure that can be exploited to

compensate the deficit of observations. These structures often characterize the signals by a

low-dimensional manifold, e.g. the set of sparse vectors or the set of low-rank matrices, em-

bedded in the high-dimensional ambient space. One of the main goals of high-dimensional

data analysis is to design accurate, robust, and computationally efficient algorithms for es-

timation of these structured signals in underdetermined regimes.

In signal processing, the data acquisition methods are traditionally devised based on

the Shannon-Nyquist sampling theorem which ties the number of required observations

to the largest frequency content of the signal. However, these acquisition methods deem

inefficient and costly for very-high-frequency signals. The drawbacks are particularly pro-
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Chapter 1. Introduction

nounced in applications where the signal of interest is sparse with respect to some known

basis or frame. To break the limitations of traditional signal acquisition, Compressed Sens-

ing (CS)(Donoho, 2006; Candès and Tao, 2006) introduced a novel approach for accurate

reconstruction of sparse signals from a relatively small number of linear observations. In

addition to the data sampling problem, the mathematical formulation of CS is employed

to address a variety of other problems in different fields. For instance, the fact that CS

operates at low sampling rates allows shorter acquisition time; a feature that is highly de-

sirable in applications such as tomography and magnetic resonance imaging (MRI) where

traditional methods are time consuming or need longer exposure to hazardous radiation.

Sparse linear regression problems studied in statistics and machine learning are similar

to CS. These problems usually describe feature and variable selection problems in high-

dimensional linear models. However, the linear models in these problems are slightly dif-

ferent as they are dictated by the observed data; a fact that does not permit many of the

assumptions considered about the measurement vectors in CS. Nevertheless, sparse linear

regression problems and the algorithms developed to solve them are also studied exten-

sively.

While linear models are widely used to analyze data and systems in variety of fields,

there are many applications where non-linear models are better suited. For example, in

binary classification problems the relation between the target parameter, data points, and

their associated binary labels is generally determined by a non-linear equation. A typical

application is the gene selection where among thousands of genes a few genes that are

likely to cause a specific type of cancer must be detected based on their expression level

in tissue samples (Lazar et al., 2012). Also there are variety of inverse problems in optics,

imaging, and tomography where the observations do not exhibit a linear relation with

the underlying signal (Kolehmainen et al., 2000; Boas et al., 2001; Borcea, 2002; Shecht-

2



Chapter 1. Introduction

man et al., 2011b,a). Despite broad application of non-linear models in high-dimensional

regime, they have received relatively less attention compared to their linear counterparts.

1.1 Contributions

The material presented in this thesis consists mostly of our work published in (Bahmani

et al., 2011; Bahmani and Raj, 2013; Bahmani et al., 2013, 2012). The main theme of this

thesis is sparsity-constrained optimization that arise in certain statistical estimation prob-

lems. We present a greedy approximate algorithm for minimization of an objective func-

tion subject to sparsity of the optimization variable. To prove accuracy of the proposed

algorithm we introduce a few sufficient conditions some of which are shown to hold for

certain families of objective functions. We also show how a variant of the proposed algo-

rithm can be applied to the problem of 1-bit Compressed Sensing. We further extend the

results by studying minimization of an objective subject to structured-sparsity of the opti-

mization variable. Under sufficient conditions similar to those mentioned above, we prove

accuracy of non-convex Projected Gradient Descent algorithm for estimation of parame-

ters with structured sparsity.

In a separate line of work, we also study the problem of `p-constrained least squares,

one of the non-convex formulations of CS. Assuming that one can project any point onto

a given `p-ball, we show that non-convex Projected Gradient Descent converges to the

true sparse signal up to an approximation error. We further characterize the necessary

conditions for projection of a point an a given `p-ball.

3



Chapter 1. Introduction

1.2 Thesis outline

The rest of the thesis is organized as follows. In Chapter 2 we briefly review CS and sparse

linear regression. Furthermore, we motivate the main subject of the thesis by describing

some applications where non-linear models need to be considered. In Chapter 3 we intro-

duce a non-convex greedy algorithm called GraSP for approximating sparsity-constrained

optimization and prove its accuracy under appropriate conditions. The theoretical analy-

sis of this chapter is provided in Appendix A. We cast 1-bit CS as a sparsity-constrained

optimization in Chapter 4 and numerically compare the performance of GraSP with the

prior work on 1-bit CS. Some of the technical details of this chapter are subsumed to

Appendix B. We also study minimization of an objective function subject to model-based

sparsity constraints in Chapter 5 and consider non-convex Projected Gradient Descent as

the approximate algorithm. Derivations of the corresponding accuracy guarantees are pro-

vided in Appendix C. We then study the non-convex `p-constrained least squares problems

by analyzing performance of Projected Gradient Descent methods in Chapter 6. The math-

ematical derivations for this chapter are gathered in Appendix 6. Finally, we conclude the

thesis in Chapter 7.
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Chapter 2

Preliminaries

2.1 Sparse Linear Regression and Compressed Sensing

Least squares problems occur in various signal processing and statistical inference appli-

cations. In these problems the relation between the vector of noisy observations y ∈ Rm

and the unknown parameter or signal x? ∈ Rn is governed by a linear equation of the form

y = Ax? + e, (2.1)

where A ∈ Rm×n is a matrix that may model a linear system or simply contains a set of

collected data. The vector e ∈ Rm represents the additive observation noise. Estimating

x? from the observation vector y is achieved by finding the vector x that minimizes the

squared error ‖Ax− y‖2
2. This least squares approach, however, is well-posed only if the

nullspace of matrix A merely contains the zero vector. The cases in which the nullspace is

greater than the singleton {0}, as in underdetermined scenarios (m < n), are more relevant

in a variety of applications. To enforce unique least squares solutions in these cases, it

becomes necessary to have some prior information about the structure of x?.

5



Chapter 2. Preliminaries

One of the structural characteristics that describe parameters and signals of interest

in a wide range of applications from medical imaging to astronomy is sparsity. Study of

high-dimensional linear inference problems with sparse parameter has gained significant

attention since the introduction of Compressed Sensing, also known as Compressive Sam-

pling, (CS) (Donoho, 2006; Candès and Tao, 2006). In standard CS problems the aim is to

estimate a sparse vector x? from linear measurements. In the absence of noise (i.e., when

e = 0), x? can be determined uniquely form the observation vector y = Ax? provided that

spark (A) > 2‖x?‖0 (i.e., every 2‖x?‖0 columns of A are linearly independent) (Donoho

and Elad, 2003). Then the ideal estimation procedure would be to find the sparsest vector

x that incurs no residual error (i.e., ‖Ax− y‖2 = 0). This ideal estimation method can be

extended to the case of noisy observations as well. Formally, the vector x? can be estimated

by solving the `0-minimization

x̂ = arg min
x
‖x‖0 s.t. ‖y −Ax‖2 ≤ ε, (2.2)

where ε is a given upper bound for ‖e‖2 (Candès et al., 2006). Unfortunately, the ideal

solver (2.2) is computationally NP-hard in general (Natarajan, 1995) and one must seek

approximate solvers instead.

It is shown in (Candès et al., 2006) that under certain conditions, minimizing the `1-

norm as a convex proxy for the `0-norm yields accurate estimates of x?. The resulting

approximate solver basically returns the solution to the convex optimization problem

x̂ = arg min
x
‖x‖1 s.t. ‖y −Ax‖2 ≤ ε, (2.3)

The required conditions for approximate equivalence of (2.2) and (2.3), however, generally

hold only if measurements are collected at a higher rate. Ideally, one merely needs m =

O (s) measurements to estimate x?, but m = O(s log n/s) measurements are necessary for

6



Chapter 2. Preliminaries

the accuracy of (2.3) to be guaranteed.

The convex program (2.3) can be solved in polynomial time using interior point meth-

ods. However, these methods do not scale well as the size of the problem grows. Therefore,

several first-order convex optimization methods are developed and analyzed as more ef-

ficient alternatives (see, e.g., Figueiredo et al., 2007; Hale et al., 2008; Beck and Teboulle,

2009; Wen et al., 2010; Agarwal et al., 2010). Another category of low-complexity algo-

rithms in CS are the non-convex greedy pursuits including Orthogonal Matching Pursuit

(OMP) (Pati et al., 1993; Tropp and Gilbert, 2007), Compressive Sampling Matching Pur-

suit (CoSaMP) (Needell and Tropp, 2009), Iterative Hard Thresholding (IHT) (Blumensath

and Davies, 2009), and Subspace Pursuit (Dai and Milenkovic, 2009) to name a few. These

greedy algorithms implicitly approximate the solution to the `0-constrained least squares

problem

x̂ = arg min
x

1

2
‖y −Ax‖22 s.t. ‖x‖0 ≤ s. (2.4)

The main theme of these iterative algorithms is to use the residual error from the previous

iteration to successively approximate the position of non-zero entries and estimate their

values. These algorithms have shown to exhibit accuracy guarantees similar to those of

convex optimization methods, though with more stringent requirements.

As mentioned above, to guarantee accuracy of the CS algorithms the measurement

matrix should meet certain conditions such as incoherence (Donoho and Huo, 2001), Re-

stricted Isometry Property (RIP) (Candès et al., 2006), Nullspace Property (Cohen et al.,

2009), etc. Among these conditions RIP is the most commonly used and the best under-

stood condition. Matrix A is said to satisfy the RIP of order k—in its symmetric form—

7
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with constant δk, if δk < 1 is the smallest number that

(1− δk) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk) ‖x‖22

holds for all k-sparse vectors x. Several CS algorithms are shown to produce accurate solu-

tions provided that the measurement matrix has a sufficiently small RIP constant of order

ck with c being a small integer. For example, solving (2.3) is guaranteed to yield an accu-

rate estimate of s-sparse x? if δ2s <
√

2 − 1 (Candès, 2008). Interested readers can find

the best known RIP-based accuracy guarantees for some of the CS algorithms in (Foucart,

2012).

Formulation of sparse linear regression problems as well as algorithms used to solve

them are virtually identical to CS. However, these problems that are usually studied in

statistics and machine learning, have a set-up that distinguishes them from the CS prob-

lems. The sensing or sampling problems addressed by CS often do not impose strong re-

strictions on the choice of the measurement matrix. Matrices drawn from certain ensem-

bles of random matrices (e.g., Gaussian, Rademacher, partial Fourier, etc) can be chosen

as the measurement matrix (Candès and Tao, 2006). These types of random matrices al-

low us to guarantee the required conditions such as RIP, at least in the probabilistic sense.

However, the analog of the measurement matrix in sparse linear regression, the design ma-

trix, is often dictated by the data under study. In general the entries of the design matrix

have unknown distributions and are possibly dependent. In certain scenarios the indepen-

dence of observations/measurements may not hold either. While it is inevitable to make

assumptions about the design matrix for the purpose of theoretical analysis, the consid-

ered assumptions are usually weaker compared to the CS assumptions. Consequently, the

analysis of sparse linear inference problems is more challenging than in CS problems.

8



Chapter 2. Preliminaries

2.2 Nonlinear Inference Problems

To motivate the need for generalization of CS, in this section we describe a few problems

and models which involve non-linear observations.

2.2.1 Generalized Linear Models

Generalized Linear Models (GLMs) are among the most commonly used models for para-

metric estimation in statistics (Dobson and Barnett, 2008). Linear, logistic, Poisson, and

gamma models used in corresponding regression problems all belong to the family of

GLMs. Because the parameter and the data samples in GLMs are mixed in a linear form,

these models are considered among linear models in statistics and machine learning liter-

ature. However, as will be seen below, in GLMs the relation between the response variable

and the parameters is in general nonlinear.

Given a vector of covariates (i.e., data sample) a ∈ X ⊆ Rn and a true parameter

x? ∈ Rn, the response variable y ∈ Y ⊆ R in canonical GLMs is assumed to follow an

exponential family conditional distribution: y | a; x? ∼ Z (y) exp (y 〈a,x?〉 − ψ (〈a,x?〉)) ,

where Z (y) is a positive function, and ψ : R 7→ R is the log-partition function that satisfies

ψ (t) = log
´
Y Z (y) exp (ty) dy for all t ∈ R. Examples of the log-partition function, which

is always convex, include but are not limited to ψlin (t) = t2/2σ2, ψlog (t) = log (1 + exp (t)),

and ψPois (t) = exp (t) corresponding to linear, logistic, and Poisson models, respectively.

Suppose that m iid covariate-response pairs {(ai, yi)}mi=1 are observed in a GLM. As

usual, it is assumed that ai’s do not depend on the true parameter. The joint likelihood

function of the observation at parameter x can be written as
∏m
i=1 p (ai) p (yi | ai; x) where

p (yi | ai; x) is the exponential family distribution mentioned above. In the Maximum Like-

lihood Estimation (MLE) framework the negative log likelihood is used as a measure of the

discrepancy between the true parameter x? and an estimate x based on the observations.

9
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Because p (ai)’s do not depend on x the corresponding terms can be simply ignored. For-

mally, the average of negative log conditional likelihoods is considered as the empirical

loss

f (x) =
1

m

m∑
i=1

ψ (〈ai,x〉)− yi 〈ai,x〉 ,

and the MLE is performed by minimizing f (x) over the set of feasible x. The constant

c and Z (y) that appear in the distribution are disregarded as they have no effect in the

outcome. We will use the logistic model, a special case of GLMs, in Chapters 3 and 5 as

examples where our algorithms apply.

2.2.2 1-bit Compressed Sensing

As mentioned above, the ideal CS formulation allows accurate estimation of sparse sig-

nals from relatively small number of linear measurements. However, sometimes certain

practical limitations impose non-ideal conditions that must be addressed in order to ap-

ply the CS framework. One of these limitations is the fact that in digital signal processing

systems the signals and measurements have quantized values. Motivated by this problem,

researchers have studied performance of CS with quantized measurements. Of particu-

lar interest has been the problem of 1-bit Compressed Sensing (Boufounos and Baraniuk,

2008), in which the CS linear measurements are quantized down to one bit that represents

their sign. Namely, for a signal x? and measurement vector a the observed measurement

in 1-bit CS is given by y = sgn (〈a,x?〉+ e) where e is an additive noise. As can be seen,

the observations and the signal are related by a nonlinear transform. In Chapter 4 we will

explain how the problem of estimating x? from a collection of 1-bit measurements can be

cast as a sparsity-constrained optimization.

10



Chapter 2. Preliminaries

2.2.3 Phase Retrieval

One of the common non-linear inverse problems that arise in applications such as optics

and imaging is the problem of phase retrieval. In these applications the observations of the

object of interest are in the form of phaseless linear measurements. In general, reconstruc-

tion of the signal is not possible in these scenarios. However, if the signal is known to be

sparse a priori then accurate reconstruction can be achieved up to a unit-modulus factor. In

particular, Quadratic Compressed Sensing is studied in (Shechtman et al., 2011b,a) for phase

retrieval problems in sub-wavelength imaging. Using convex relaxation it is shown that

the estimator can be formulated as a solution to a Semi-Definite Program (SDP) dubbed

PhaseLift (Candès et al., 2012; Candès and Li, 2012; Li and Voroninski, 2012).

11



Chapter 3

Sparsity-Constrained Optimization

3.1 Background

Theoretical and application aspects of sparse estimation in linear models have been stud-

ied extensively in areas such as signal processing, machine learning, and statistics. The

sparse linear regression and CS algorithms attempt to provide a sparse vector whose con-

sistency with the acquired data is usually measured by the squared error. While this mea-

sure of discrepancy is often desirable for signal processing applications, it is not the ap-

propriate choice for a variety of other applications. For example, in statistics and machine

learning the logistic loss function is also commonly used in regression and classification

problems (see Liu et al., 2009, and references therein). Thus, it is desirable to develop the-

ory and algorithms that apply to a broader class of optimization problems with sparsity

constraints. Most of the work in this area extend the use of the `1-norm as a regularizer,

effective to induce sparse solutions in linear regression, to problems with nonlinear mod-

els (see, e.g., Bunea, 2008; van de Geer, 2008; Kakade et al., 2010; Negahban et al., 2009).

As a special case, logistic regression with `1 and elastic net regularization are studied by

12
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Bunea (2008). Furthermore, Kakade et al. (2010) have studied the accuracy of sparse esti-

mation through `1-regularization for the exponential family distributions. A more general

frame of study is proposed and analyzed by Negahban et al. (2009) where regularization

with “decomposable” norms is considered in M-estimation problems. To provide the accu-

racy guarantees, these works generalize the Restricted Eigenvalue condition (Bickel et al.,

2009) to ensure that the loss function is strongly convex over a restriction of its domain. We

would like to emphasize that these sufficient conditions generally hold with proper con-

stants and with high probability only if one assumes that the true parameter is bounded.

This fact is more apparent in some of the mentioned work (e.g., Bunea, 2008; Kakade et al.,

2010), while in some others (e.g., Negahban et al., 2009) the assumption is not explicitly

stated. We will elaborate on this matter in Section 3.2. Tewari et al. (2011) also proposed a

coordinate-descent type algorithm for minimization of a convex and smooth objective over

the convex signal/parameter models introduced in (Chandrasekaran et al., 2012). This for-

mulation includes the `1-constrained minimization as a special case, and the algorithm is

shown to converge to the minimum in objective value similar to the standard results in

convex optimization.

Furthermore, Shalev-Shwartz et al. (2010) proposed a number of greedy that sparsify

a given estimate at the cost of relatively small increase of the objective function. However,

their algorithms are not stand-alone. A generalization of CS is also proposed in (Blumen-

sath, 2010), where the linear measurement operator is replaced by a nonlinear operator

that applies to the sparse signal. Considering the norm of the residual error as the objec-

tive, Blumensath (2010) shows that if the objective satisfies certain sufficient conditions,

the sparse signal can be accurately estimated by a generalization of the Iterative Hard

Thresholding algorithm (Blumensath and Davies, 2009). The formulation of (Blumensath,

2010), however, has a limited scope because the metric of error is defined using a norm. For

13
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instance, the formulation does not apply to objectives such as the logistic loss. Also, (Beck

and Eldar, 2012) studies the problem of minimizing a generic objective function subject to

sparsity constraint from the optimization perspective. By analyzing necessary optimality

conditions for the sparse minimizer, a few iterative algorithms are proposed in (Beck and

Eldar, 2012) that converge to the sparse minimizer, should the objective satisfies some reg-

ularity conditions. Furthermore, Jalali et al. (2011) studied a forward-backward algorithm

using a variant of the sufficient conditions introduced in (Negahban et al., 2009). Similar

to our work, the main result in (Jalali et al., 2011) imposes conditions on the function as

restricted to sparse inputs whose non-zeros are fewer than a multiple of the target spar-

sity level. The multiplier used in their results has an objective-dependent value and is never

less than 10. Furthermore, the multiplier is important in their analysis not only for deter-

mining the stopping condition of the algorithm, but also in the lower bound assumed for

the minimal magnitude of the non-zero entries. In contrast, the multiplier in our results is

fixed at 4, independent of the objective function itself, and we make no assumptions about

the magnitudes of the non-zero entries.

In this chapter we propose a non-convex greedy algorithm, the Gradient Support Pur-

suit (GraSP), for sparse estimation problems that arise in applications with general non-

linear models. We prove the accuracy of GraSP for a class of cost functions that have a

Stable Restricted Hessian (SRH). The SRH characterizes the functions whose restriction to

sparse canonical subspaces have well-conditioned Hessian matrices. Similarly, we analyze

the GraSP algorithm for non-smooth functions that have a Stable Restricted Linearization

(SRL), a property analogous to SRH. The analysis and the guarantees for smooth and non-

smooth cost functions are similar, except for less stringent conditions derived for smooth

cost functions due to properties of symmetric Hessian matrices. We also prove that the

SRH holds for the case of the `2-penalized logistic loss function.
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3.2 Convex Methods and Their Required Conditions

The existing studies on sparsity-constrained optimization are mostly in the context of sta-

tistical estimation. The majority of these studies consider the cost function to be convex

everywhere and rely on the `1-norm as the means to induce sparsity in the solution. With

f (x) denoting the considered loss function and for proper values of λ ≥ 0 and R ≥ 0,

these works study either the accuracy of the `1-regularized estimator given by

arg min
x
f (x) + λ‖x‖1,

or that of the `1-constrained estimator given by

arg min
x
f (x)

subject to‖x‖1 ≤ R.

For example, Kakade et al. (2010) have shown that for the exponential family of distribu-

tions maximum likelihood estimation with `1-regularization yields accurate estimates of

the underlying sparse parameter. Furthermore, Negahban et al. have developed a unifying

framework for analyzing statistical accuracy of M-estimators regularized by “decompos-

able” norms in (Negahban et al., 2009). In particular, in their work `1-regularization is

applied to Generalized Linear Models (GLM) (Dobson and Barnett, 2008) and shown to

guarantee a bounded distance between the estimate and the true statistical parameter. To

establish this error bound they introduced the notion of Restricted Strong Convexity (RSC),

which basically requires a lower bound on the curvature of the cost function around the

true parameter in a restricted set of directions. The achieved error bound in this frame-

work is inversely proportional to this curvature bound. Furthermore, Agarwal et al. (2010)

have studied Projected Gradient Descent as a method to solve `1-constrained optimization

problems and established accuracy guarantees using a slightly different notion of RSC and
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Restricted Smoothness (RSM).

Note that the guarantees provided for majority of the `1-regularization algorithms pre-

sume that the true parameter is bounded, albeit implicitly. For instance, the error bound

for `1-regularized logistic regression is recognized by Bunea (2008) to be dependent on the

true parameter (Bunea, 2008, Assumption A, Theorem 2.4, and the remark that succeeds

them). Moreover, the result proposed by Kakade et al. (2010) implicitly requires the true

parameter to have a sufficiently short length to allow the choice of the desirable regular-

ization coefficient (Kakade et al., 2010, Theorems 4.2 and 4.5). Negahban et al. (2009) also

assume that the true parameter is inside the unit ball to establish the required condition

for their analysis of `1-regularized GLM, although this restriction is not explicitly stated

(see the longer version of Negahban et al., 2009, p. 37). We can better understand why

restricting the length of the true parameter may generally be inevitable by viewing these

estimation problems from the perspective of empirical processes and their convergence.

Typically in parametric estimation problems a sample loss function l (x,a, y) is associated

with the covariate-response pair (a, y) and a parameter x. Given m iid observations the

empirical loss is formulated as L̂m (x) = 1
m

∑m
i=1 l (x,ai, yi). The estimator under study

is often the minimizer of the empirical loss, perhaps considering an extra regularization

or constraint for the parameter x. Furthermore, it is known that L̂m (x) as an empirical

process is a good approximation of the expected loss L (x) = E [l (x,a, y)] (see Vapnik,

1998, chap. 5 and van de Geer, 2000). Consequently, if for a valid choice of x? the re-

quired sufficient condition is not satisfied by L (x), then in general it cannot be satisfied

at the same x? by L̂m (x) either. In particular, if the expected process is not strongly con-

vex over an unbounded, but perhaps otherwise restricted, set the corresponding empirical

process cannot be strongly convex over the same set. This reasoning applies in many cases

including the studies mentioned above, where it would be impossible to achieve the de-
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sired restricted strong convexity properties—with high probability—if the true parameter

is allowed to be unbounded.

Furthermore, the methods that rely on the `1-norm are known to result in sparse so-

lutions, but, as mentioned in (Kakade et al., 2010), the sparsity of these solutions is not

known to be optimal in general. One can intuit this fact from definitions of RSC and RSM.

These two properties bound the curvature of the function from below and above in a re-

stricted set of directions around the true optimum. For quadratic cost functions, such as

squared error, these curvature bounds are absolute constants. As stated before, for more

general cost functions such as the loss functions in GLMs, however, these constants will

depend on the location of the true optimum. Consequently, depending on the location of

the true optimum these error bounds could be extremely large, albeit finite. When error

bounds are significantly large, the sparsity of the solution obtained by `1-regularization

may not be satisfactory. This motivates investigation of algorithms that do not rely on `1-

norm to induce sparsity.

3.3 Problem Formulation and the GraSP Algorithm

As seen in Section 2.1, in standard CS the squared error f(x) = 1
2‖y −Ax‖22 is used to

measure fidelity of the estimate. While this is appropriate for a large number of signal

acquisition applications, it is not the right cost in other fields. Thus, the significant ad-

vances in CS cannot readily be applied in these fields when estimation or prediction of

sparse parameters become necessary. In this chapter we focus on a generalization of (2.4)

where a generic cost function replaces the squared error. Specifically, for the cost function

f : Rn 7→ R, it is desirable to approximate

arg min
x
f (x) s.t. ‖x‖0 ≤ s. (3.1)
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We propose the Gradient Support Pursuit (GraSP) algorithm, which is inspired by and

generalizes the CoSaMP algorithm, to approximate the solution to (3.1) for a broader class

of cost functions.

Of course, even for a simple quadratic objective, (3.1) can have combinatorial com-

plexity and become NP-hard. However, similar to the results of CS, knowing that the cost

function obeys certain properties allows us to obtain accurate estimates through tractable

algorithms. To guarantee that GraSP yields accurate solutions and is a tractable algorithm,

we also require the cost function to have certain properties that will be described in Section

3.3.1. These properties are analogous to and generalize the RIP in the standard CS frame-

work. For smooth cost functions we introduce the notion of a Stable Restricted Hessian

(SRH) and for non-smooth cost functions we introduce the Stable Restricted Linearization

(SRL). Both of these properties basically bound the Bregman divergence of the cost func-

tion restricted to sparse canonical subspaces. However, the analysis based on the SRH is

facilitated by matrix algebra that results in somewhat less restrictive requirements for the

cost function.

3.3.1 Algorithm Description

Algorithm 1: The GraSP algorithm
input : f (·) and s
output: x̂

initialize: x̂ = 0
repeat

1 compute local gradient: z = ∇f (x̂)
2 identify directions: Z = supp (z2s)
3 merge supports: T = Z ∪ supp (x̂)
4 minimize over support: b = arg min f (x) s.t. x|T c = 0
5 prune estimate: x̂ = bs

until halting condition holds
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GraSP is an iterative algorithm, summarized in Algorithm 1, that maintains and up-

dates an estimate x̂ of the sparse optimum at every iteration. The first step in each itera-

tion, z = ∇f (x̂), evaluates the gradient of the cost function at the current estimate. For

nonsmooth functions, instead of the gradient we use a restricted subgradient z = ∇f (x̂)

defined in Section 3.3.2. Then 2s coordinates of the vector z that have the largest mag-

nitude are chosen as the directions in which pursuing the minimization will be most ef-

fective. Their indices, denoted by Z = supp (z2s), are then merged with the support of

the current estimate to obtain T = Z ∪ supp (x̂). The combined support is a set of at most

3s indices over which the function f is minimized to produce an intermediate estimate

b = arg min f (x) s.t. x|T c = 0. The estimate x̂ is then updated as the best s-term approx-

imation of the intermediate estimate b. The iterations terminate once certain condition,

e.g., on the change of the cost function or the change of the estimated minimum from the

previous iteration, holds.

In the special case where the squared error f (x) = 1
2‖y −Ax‖22 is the cost func-

tion, GraSP reduces to CoSaMP. Specifically, the gradient step reduces to the proxy step

z = AT (y −Ax̂) and minimization over the restricted support reduces to the constrained

pseudoinverse step b|T = A†T y, b|T c = 0 in CoSaMP.

Variants Although in this chapter we only analyze the standard form of GraSP outlined

in Algorithm 1, other variants of the algorithm can also be studied. Below we list some of

these variants.

1. Debiasing: In this variant, instead of performing a hard thresholding on the vector b

in line 5 of the algorithm, the objective is minimized restricted to the support set of

bs to obtain the new iterate:

x̂ = arg min
x

f (x) s.t. supp (x) ⊆ supp (bs) .
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2. Restricted Newton Step: To reduce the computations in each iteration, the minimiza-

tion that yields b in line 4, we can set b|T c = 0 and take a restricted Newton step

as

b|T = x̂|T − κ
(
∇2
T f (x̂)

)−1
x̂|T ,

where κ > 0 is a step-size. Of course, here we are assuming that the restricted Hes-

sian, ∇2
T f (x̂), is invertible.

3. Restricted Gradient Descent: The minimization step in line 4 can be relaxed even

further by applying a restricted gradient descent. In this approach, we again set

b|T c = 0 and

b|T = x̂|T − κ ∇f (x̂)|T .

Since T contains both the support set of x̂ and the 2s-largest entries of ∇f (x̂) , it is

easy to show that each iteration of this alternative method is equivalent to a standard

gradient descent followed by a hard thresholding. In particular, if the squared error

is the cost function as in standard CS, this variant reduces to the IHT algorithm.

3.3.2 Sparse Reconstruction Conditions

In what follows we characterize the functions for which accuracy of GraSP can be guaran-

teed. For twice continuously differentiable functions we rely on Stable Restricted Hessian

(SRH), while for non-smooth cost functions we introduce the Stable Restricted Lineariza-

tion (SRL). These properties that are analogous to the RIP in the standard CS framework,

basically require that the curvature of the cost function over the sparse subspaces can be

bounded locally from above and below such that the corresponding bounds have the same

order. Below we provide precise definitions of these two properties.
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Definition 3.1 (Stable Restricted Hessian). Suppose that f is a twice continuously differ-

entiable function whose Hessian is denoted by ∇2f (·). Furthermore, let

Ak (x) = sup
{

∆T∇2f (x) ∆
∣∣∣ |supp (x) ∪ supp (∆)| ≤ k, ‖∆‖2 = 1

}
(3.2)

and

Bk (x) = inf
{

∆T∇2f (x) ∆
∣∣∣ |supp (x) ∪ supp (∆)| ≤ k, ‖∆‖2 = 1

}
, (3.3)

for all k-sparse vectors x. Then f is said to have a Stable Restricted Hessian (SRH) with

constant µk, or in short µk-SRH, if 1 ≤ Ak(x)
Bk(x) ≤ µk.

Remark 3.1. Since the Hessian of f is symmetric, an equivalent for Definition 3.1 is that

a twice continuously differentiable function f has µk-SRH if the condition number of

∇2
Kf (x) is not greater than µk for all k-sparse vectors x and sets K ⊆ [n] with

|supp (x) ∪ K| ≤ k.

In the special case when the cost function is the squared error as in (2.4), we can write

∇2f (x) = ATA which is constant. The SRH condition then requires

Bk‖∆‖22 ≤ ‖A∆‖22 ≤ Ak‖∆‖
2
2

to hold for all k-sparse vectors ∆ with Ak/Bk ≤ µk. Therefore, in this special case the SRH

condition essentially becomes equivalent to the RIP condition.

Remark 3.2. Note that the functions that satisfy the SRH are convex over canonical sparse

subspaces, but they are not necessarily convex everywhere. The following two examples

describe some non-convex functions that have SRH.

Example 3.1. Let f (x) = 1
2xTQx, where Q = 2 × 11T − I. Obviously, we have ∇2f (x) =

Q. Therefore, (3.2) and (3.3) determine the extreme eigenvalues across all of the k × k
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symmetric submatrices of Q. Note that the diagonal entries of Q are all equal to one, while

its off-diagonal entries are all equal to two. Therefore, for any 1-sparse signal u we have

uTQu = ‖u‖22, meaning that f has µ1-SRH with µ1 = 1. However, for u = [1,−1, 0, . . . , 0]T

we have uTQu < 0, which means that the Hessian of f is not positive semi-definite (i.e., f

is not convex).

Example 3.2. Let f (x) = 1
2‖x‖

2
2 + Cx1x2 · · ·xk+1 where the dimensionality of x is greater

than k. It is obvious that this function is convex for k-sparse vectors as x1x2 · · ·xk+1 = 0

for any k-sparse vector. So we can easily verify that f satisfies SRH of order k. However,

for x1 = x2 = · · · = xk+1 = t and xi = 0 for i > k + 1 the restriction of the Hessian

of f to indices in [k + 1] (i.e., PT
[k+1]∇

2f (x) P[k+1]) is a matrix with diagonal entries all

equal to one and off-diagonal entries all equal to Ctk−1. Let Q denote this matrix and

u be a unit-norm vector such that 〈u,1〉 = 0. Then it is straightforward to verify that

uTQu = 1−Ctk−1, which can be negative for sufficiently large values ofC and t. Therefore,

the Hessian of f is not positive semi-definite everywhere, meaning that f is not convex.

To generalize the notion of SRH to the case of nonsmooth functions, first we define the

restricted subgradient of a function.

Definition 3.2 (Restricted Subgradient). We say vector ∇f (x) is a restricted subgradient

of f : Rn 7→ R at point x if

f (x + ∆)− f (x) ≥ 〈∇f (x) ,∆〉

holds for all k-sparse vectors ∆.

Remark 3.3. We introduced the notion of restricted subgradient so that the restrictions

imposed on f are as minimal as we need. We acknowledge that the existence of restricted

subgradients implies convexity in sparse directions, but it does not imply convexity every-

where.
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Remark 3.4. Obviously, if the function f is convex everywhere, then any subgradient of f

determines a restricted subgradient of f as well. In general one may need to invoke the

axiom of choice to define the restricted subgradient.

Remark 3.5. We drop the sparsity level from the notation as it can be understood from the

context.

With a slight abuse of terminology we call

Bf

(
x′ ‖ x

)
= f

(
x′
)
− f (x)−

〈
∇f (x) ,x′ − x

〉
the restricted Bregman divergence of f : Rn 7→ R between points x and x′ where ∇f (·)

gives a restricted subgradient of f (·).

Definition 3.3 (Stable Restricted Linearization). Let x be a k-sparse vector in Rn. For func-

tion f : Rn 7→ R we define the functions

αk (x) = sup

{
1

‖∆‖22
Bf (x + ∆ ‖ x) | ∆ 6= 0 and |supp (x) ∪ supp (∆)| ≤ k

}

and

βk (x) = inf

{
1

‖∆‖22
Bf (x + ∆ ‖ x) | ∆ 6= 0 and |supp (x) ∪ supp (∆)| ≤ k

}
,

respectively. Then f (·) is said to have a Stable Restricted Linearization with constant µk,

or µk-SRL, if αk(x)
βk(x) ≤ µk for all k-sparse vectors x.

Remark 3.6. The SRH and SRL conditions are similar to various forms of the Restricted

Strong Convexity (RSC) and Restricted Strong Smoothness (RSS) conditions (Negahban

et al., 2009; Agarwal et al., 2010; Blumensath, 2010; Jalali et al., 2011; Zhang, 2011) in

the sense that they all bound the curvature of the objective function over a restricted set.

The SRL condition quantifies the curvature in terms of a (restricted) Bregman divergence
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similar to RSC and RSS. The quadratic form used in SRH can also be converted to the Breg-

man divergence form used in RSC and RSS and vice-versa using the mean-value theorem.

However, compared to various forms of RSC and RSS conditions SRH and SRL have some

important distinctions. The main difference is that the bounds in SRH and SRL conditions

are not global constants; only their ratio is required to be bounded globally. Furthermore,

unlike the SRH and SRL conditions the variants of RSC and RSS, that are used in convex

relaxation methods, are required to hold over a set which is strictly larger than the set of

canonical k-sparse vectors.

There is also a subtle but important difference regarding the points where the curva-

ture is evaluated at. Since Negahban et al. (2009) analyze a convex program, rather than

an iterative algorithm, they only needed to invoke the RSC and RSS at a neighborhood of

the true parameter. In contrast, the other variants of RSC and RSS (see e.g., Agarwal et al.,

2010; Jalali et al., 2011), as well as our SRH and SRL conditions, require the curvature

bounds to hold uniformly over a larger set of points, thereby they are more stringent.

3.3.3 Main Theorems

Now we can state our main results regarding approximation of

x? = arg min f(x) s.t. ‖x‖0 ≤ s, (3.4)

using the GraSP algorithm.

Theorem 3.1. Suppose that f is a twice continuously differentiable function that has µ4s-SRH

with µ4s ≤ 1+
√

3
2 . Furthermore, suppose that for some ε > 0 we have ‖∇f (x?)|I‖2 ≤ ε B4s (x)

for all 4s-sparse x, where I is the position of the 3s largest entries of ∇f (x?) in magnitude.
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Then x̂(i), the estimate at the i-th iteration, satisfies∥∥∥x̂(i) − x?
∥∥∥

2
≤ 2−i‖x?‖2 +

(
6 + 2

√
3
)
ε.

Remark 3.7. Note that this result indicates that ∇f (x?) determines how accurate the es-

timate can be. In particular, if the sparse minimum x? is sufficiently close to an uncon-

strained minimum of f then the estimation error floor is negligible because ∇f (x?) has

small magnitude. This result is analogous to accuracy guarantees for estimation from noisy

measurements in CS (Candès et al., 2006; Needell and Tropp, 2009).

Remark 3.8. As the derivations required to prove Theorem 3.1 show, the provided accuracy

guarantee holds for any s-sparse x?, even if it does not obey (3.4). Obviously, for arbitrary

choices of x?, ∇f (x?)|I may have a large norm that cannot be bounded properly which

implies large values for ε and thus large approximation errors. In statistical estimation

problems, often the true parameter that describes the data is chosen as the target parame-

ter x? rather than the minimizer of the average loss function as in (3.4). In these problems,

the approximation error ‖∇f (x?)|I‖2 has statistical interpretation and can determine the

statistical precision of the problem. This property is easy to verify in linear regression

problems. We will also show this for the logistic loss as an example in Section 3.4.

Nonsmooth cost functions should be treated differently, since we do not have the lux-

ury of working with Hessian matrices for these type of functions. The following theorem

provides guarantees that are similar to those of Theorem 3.1 for nonsmooth cost functions

that satisfy the SRL condition.

Theorem 3.2. Suppose that f is a function that is not necessarily smooth, but it satisfies µ4s-

SRL with µ4s ≤ 3+
√

3
4 . Furthermore, suppose that for β4s (·) in Definition 3.3 there exists some

ε > 0 such that
∥∥∇f (x?)|I

∥∥
2
≤ εβ4s (x) holds for all 4s-sparse vectors x, where I is the position

of the 3s largest entries of ∇f (x?) in magnitude. Then x̂(i), the estimate at the i-th iteration,
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satisfies ∥∥∥x̂(i) − x?
∥∥∥

2
≤ 2−i‖x?‖2 +

(
6 + 2

√
3
)
ε.

Remark 3.9. Should the SRH or SRL conditions hold for the objective function, it is straight-

forward to convert the point accuracy guarantees of Theorems 3.1 and 3.2, into accuracy

guarantees in terms of the objective value. First we can use SRH or SRL to bound the Breg-

man divergence, or its restricted version defined above, for points x̂(i) and x?. Then we

can obtain a bound for the accuracy of the objective value by invoking the results of the

theorems. This indirect approach, however, might not lead to sharp bounds and thus we

do not pursue the detailed analysis in this work.

3.4 Example: Sparse Minimization of `2-regularized Logistic Re-

gression

One of the models widely used in machine learning and statistics is the logistic model. In

this model the relation between the data, represented by a random vector a ∈ Rn, and its

associated label, represented by a random binary variable y ∈ {0, 1}, is determined by the

conditional probability

Pr {y | a; x} =
exp (y 〈a,x〉)

1 + exp (〈a,x〉)
, (3.5)

where x denotes a parameter vector. Then, for a set of m independently drawn data sam-

ples {(ai, yi)}mi=1 the joint likelihood can be written as a function of x. To find the max-

imum likelihood estimate one should maximize this likelihood function, or equivalently
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minimize the negative log-likelihood, the logistic loss,

g(x) =
1

m

m∑
i=1

log (1 + exp (〈ai,x〉))− yi 〈ai,x〉 .

It is well-known that g (·) is strictly convex for n ≤ m provided that the associated design

matrix, A = [a1 a2 . . . am]T, is full-rank. However, in many important applications (e.g.,

feature selection) the problem can be underdetermined (i.e.,m < n). In these scenarios the

logistic loss is merely convex and it does not have a unique minimum. Furthermore, it is

possible, especially in underdetermined problems, that the observed data is linearly sepa-

rable. In that case one can achieve arbitrarily small loss values by tending the parameters

to infinity along certain directions. To compensate for these drawbacks the logistic loss is

usually regularized by some penalty term (Hastie et al., 2009; Bunea, 2008).

One of the candidates for the penalty function is the (squared) `2-norm of x (i.e., ‖x‖22).

Considering a positive penalty coefficient η the regularized loss is

fη (x) = g(x) +
η

2
‖x‖22.

For any convex g (·) this regularized loss is guaranteed to be η-strongly convex, thus it has

a unique minimum. Furthermore, the penalty term implicitly bounds the length of the

minimizer thereby resolving the aforementioned problems. Nevertheless, the `2 penalty

does not promote sparse solutions. Therefore, it is often desirable to impose an explicit

sparsity constraint, in addition to the `2 regularizer.

3.4.1 Verifying SRH for `2-regularized logistic loss

It is easy to show that the Hessian of the logistic loss at any point x is given by

∇2g (x) =
1

4m
ATΛA,
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where Λ is an m × m diagonal matrix whose diagonal entries are Λii = sech2 1
2 〈ai,x〉

with sech (·) denoting the hyperbolic secant function. Note that 0 4 ∇2g (x) 4 1
4mATA.

Therefore, if ∇2fη (x) denotes the Hessian of the `2-regularized logistic loss, we have

∀x,∆ η‖∆‖22 ≤∆T∇2fη (x) ∆ ≤ 1

4m
‖A∆‖22 + η‖∆‖22. (3.6)

To verify SRH, the upper and lower bounds achieved at k-sparse vectors ∆ are of particular

interest. It only remains to find an appropriate upper bound for ‖A∆‖22 in terms of ‖∆‖22.

To this end we use the following result on Chernoff bounds for random matrices due to

Tropp (2012).

Theorem 3.3 (Matrix Chernoff (Tropp, 2012)). Consider a finite sequence {Mi} of k × k,

independent, random, self-adjoint matrices that satisfy

Mi < 0 and λmax (Mi) ≤ R almost surely.

Let θmax := λmax (
∑

i E [Mi]). Then for τ ≥ 0,

Pr

{
λmax

(∑
i

Mi

)
≥ (1 + τ) θmax

}
≤k exp

(
θmax

R
(τ − (1 + τ) log (1 + τ)

)
.

As stated before, in a standard logistic model data samples {ai} are supposed to be

independent instances of a random vector a. In order to apply Theorem 3.3 we need to

make the following extra assumptions:

Assumption. For every J ⊆ [n] with |J | = k,

(i) we have
∥∥a|J

∥∥2

2
≤ R almost surely, and

(ii) none of the matrices PT
JE
[
aaT

]
PJ is the zero matrix.
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We define θJmax := λmax

(
PT
JCPJ

)
, where C = E

[
aaT

]
, and let

θ := max
J⊆[n] , |J |=k

θJmax and θ̃ := min
J⊆[n] , |J |=k

θJmax.

To simplify the notation henceforth we let h (τ) = (1 + τ) log (1 + τ)− τ .

Corollary 3.1. With the above assumptions, if

m ≥ R
(

log k + k
(

1 + log
n

k

)
− log ε

)
/
(
θ̃h (τ)

)
for some τ > 0 and ε ∈ (0, 1), then with probability at least 1− ε the `2-regularized logistic loss

has µk-SRH with µk ≤ 1 + 1+τ
4η θ.

Proof. For any set of k indices J let MJ
i = ai|J ai|TJ = PT

J aia
T
i PJ . The independence of

the vectors ai implies that the matrix

AT
JAJ =

m∑
i=1

ai|J ai|TJ

=
m∑
i=1

MJ
i

is a sum of n independent, random, self-adjoint matrices. Assumption (i) implies that

λmax

(
MJ

i

)
=
∥∥ai|J

∥∥
2

2 ≤ R almost surely. Furthermore, we have

λmax

(
m∑
i=1

E
[
MJ

i

])
= λmax

(
m∑
i=1

E
[
PT
J aia

T
i PJ

])

= λmax

(
m∑
i=1

PT
JE
[
aia

T
i

]
PJ

)

= λmax

(
m∑
i=1

PT
JCPJ

)

= mλmax

(
PT
JCPJ

)
= mθJmax.
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Hence, for any fixed index set J with |J | = k we may apply Theorem 3.3 for Mi = MJ
i ,

θmax = mθJmax, and τ > 0 to obtain

Pr

{
λmax

(
m∑
i=1

MJ
i

)
≥ (1 + τ)mθJmax

}
≤k exp

(
−mθ

J
maxh (τ)

R

)
.

Furthermore, we can write

Pr
{
λmax

(
AT
JAJ

)
≥ (1 + τ)mθ

}
= Pr

{
λmax

(
m∑
i=1

MJ
i

)
≥ (1 + τ)mθ

}

≤ Pr

{
λmax

(
m∑
i=1

MJ
i

)
≥ (1 + τ)mθJmax

}

≤ k exp

(
−mθ

J
maxh (τ)

R

)
≤ k exp

(
−mθ̃h (τ)

R

)
. (3.7)

Note that Assumption (ii) guarantees that θ̃ > 0, and thus the above probability bound will

not be vacuous for sufficiently large m. To ensure a uniform guarantee for all
(
n
k

)
possible

choices of J we can use the union bound to obtain

Pr


∨
J⊆[n]
|J |=k

λmax

(
AT
JAJ

)
≥(1+τ)mθ

 ≤
∑
J⊆[n]
|J |=k

Pr
{
λmax

(
AT
JAJ

)
≥(1+τ)mθ

}

≤ k
(
n

k

)
exp

(
−mθ̃h (τ)

R

)

≤ k
(ne
k

)k
exp

(
−mθ̃h (τ)

R

)

= exp

(
log k+k+k log

n

k
−mθ̃h (τ)

R

)
.

Therefore, for ε ∈ (0, 1) andm ≥ R
(
log k + k

(
1 + log n

k

)
− log ε

)
/
(
θ̃h (τ)

)
it follows from

30



Chapter 3. Sparsity-Constrained Optimization

(3.6) that for any x and any k-sparse ∆,

η‖∆‖22 ≤∆T∇2fη (x) ∆ ≤
(
η +

1 + τ

4
θ

)
‖∆‖22

holds with probability at least 1 − ε. Thus, the `2-regularized logistic loss has an SRH

constant µk ≤ 1 + 1+τ
4η θ with probability 1− ε.

Remark 3.10. One implication of this result is that for a regime in which k and n grow

sufficiently large while n
k remains constant one can achieve small failure rates provided

that m = Ω
(
Rk log n

k

)
. Note that R is deliberately included in the argument of the or-

der function because in general R depends on k. In other words, the above analysis may

require m = Ω
(
k2 log n

k

)
as the sufficient number of observations. This bound is a conse-

quence of using Theorem 3.3, but to the best of our knowledge, other results regarding

the extreme eigenvalues of the average of independent random PSD matrices also yield an

m of the same order. If matrix A has certain additional properties (e.g., independent and

sub-Gaussian entries), however, a better rate of m = Ω
(
k log n

k

)
can be achieved without

using the techniques mentioned above.

Remark 3.11. The analysis provided here is not specific to the `2-regularized logistic loss

and can be readily extended to any other `2-regularized GLM loss whose log-partition

function has a Lipschitz-continuous derivative.

3.4.2 Bounding the approximation error

We are going to bound
∥∥∇fη (x?)|I

∥∥
2

which controls the approximation error in the state-

ment of Theorem 3.1. In the case of case of `2-regularized logistic loss considered in this

section we have

∇fη (x) =

m∑
i=1

(
1

1 + exp (−〈ai,x〉)
− yi

)
ai + ηx.
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Denoting 1
1+exp(−〈ai,x?〉) − yi by vi for i = 1, 2, . . . ,m then we can deduce

∥∥∇fη (x?)|I
∥∥

2
=

∥∥∥∥∥ 1

m

m∑
i=1

vi ai|I + η x?|I

∥∥∥∥∥
2

=

∥∥∥∥ 1

m
AT
Iv + η x?|I

∥∥∥∥
2

≤ 1

m

∥∥AT
I
∥∥‖v‖2 + η‖x?|I‖2

≤ 1√
m
‖AI‖

√√√√ 1

m

m∑
i=1

v2
i + η‖x?|I‖2,

where v = [v1 v2 . . . vm]T. Note that vi’s are m independent copies of the random variable

v = 1
1+exp(−〈a,x?〉) − y that is zero-mean and always lie in the interval [−1, 1]. Therefore,

applying the Hoeffding’s inequality yields

Pr

{
1

m

m∑
i=1

v2
i ≥ (1 + c)σ2

v

}
≤ exp

(
−2mc2σ4

v

)
,

where σ2
v = E

[
v2
]

is the variance of v. Furthermore, using the logistic model (3.5) we can

deduce

σ2
v = E

[
v2
]

= E
[
E
[
v2 | a

]]
= E

[
E
[
(y − E [y | a])2 | a

]]
= E [var (y | a)]

= E
[

1

1 + exp (〈a,x?〉)
× exp (〈a,x?〉)

1 + exp (〈a,x?〉)

]
(because y | a ∼ Bernoulli as in (3.5))

= E
[

1

2 + exp (〈a,x?〉) + exp (−〈a,x?〉)

]
≤ 1

4
(because exp (t) + exp (−t) ≥ 2).
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Therefore, we have 1
m

∑m
i=1 v

2
i <

1
4 with high probability. As in the previous subsection

one can also bound 1√
m
‖AI‖ =

√
1
mλmax

(
AT
IAI

)
using (3.7) with k = |I| = 3s. Hence,

with high probability we have

∥∥∇fη (x?)|I
∥∥

2
≤ 1

2

√
(1 + τ) θ + η‖x?‖2.

Interestingly, this analysis can also be extended to the GLMs whose log-partition function

ψ (·) obeys 0 ≤ ψ′′ (t) ≤ C for all t with C being a positive constant. For these models the

approximation error can be bounded in terms of the variance of vψ = ψ′ (〈a,x?〉)− y.

3.5 Simulations

Algorithms that are used for sparsity-constrained estimation or optimization often induce

sparsity using different types of regularizations or constraints. Therefore, the optimized

objective function may vary from one algorithm to another, even though all of these algo-

rithms try to estimate the same sparse parameter and sparsely optimize the same original

objective. Because of the discrepancy in the optimized objective functions it is generally

difficult to compare performance of these algorithms. Applying algorithms on real data

generally produces even less reliable results because of the unmanageable or unknown

characteristics of the real data. Nevertheless, we evaluated the performance of GraSP for

variable selection in the logistic model both on synthetic and real data.

Synthetic Data

In our simulations the sparse parameter of interest x? is a n = 1000 dimensional vector

that has s = 10 nonzero entries drawn independently from the standard Gaussian distri-

bution. An intercept c ∈ R is also considered which is drawn independently of the other

parameters according to the standard Gaussian distribution. Each data sample is an inde-
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pendent instance of the random vector a = [a1, a2, . . . , an]T generated by an autoregressive

process (Hamilton, 1994) determined by

aj+1 = ρaj +
√

1− ρ2zj , for all j ∈ [p− 1]

with a1 ∼ N (0, 1), zj ∼ N (0, 1), and ρ ∈ [0, 1] being the correlation parameter. The data

model we describe and use above is identical to the experimental model used in (Agarwal

et al., 2010), except that we adjusted the coefficients to ensure that E
[
a2
j

]
= 1 for all

j ∈ [n]. The data labels, y ∈ {0, 1} are then drawn randomly according to the Bernoulli

distribution with

Pr {y = 0 | a} = 1/ (1 + exp (〈a,x?〉+ c)) .

We compared GraSP to the LASSO algorithm implemented in the GLMnet package

(Friedman et al., 2010), as well as the Orthogonal Matching Pursuit method dubbed Logit-

OMP (Lozano et al., 2011). To isolate the effect of `2-regularization, both LASSO and the

basic implementation of GraSP did not consider additional `2-regularization terms. To

analyze the effect of an additional `2-regularization we also evaluated the performance

of GraSP with `2-regularized logistic loss, as well as the logistic regression with elastic

net (i.e., mixed `1-`2) penalty also available in the GLMnet package. We configured the

GLMnet software to produce s-sparse solutions for a fair comparison. For the elastic net

penalty (1− ω) ‖x‖22/2 + ω‖x‖1 we considered the “mixing parameter” ω to be 0.8. For

the `2-regularized logistic loss we considered η = (1− ω)
√

logn
m . For each choice of the

number of measurements m between 50 and 1000 in steps of size 50, and ρ in the set{
0, 1

3 ,
1
2 ,
√

2
2

}
we generate the data and the associated labels and apply the algorithms. The

average performance is measured over 200 trials for each pair of (m, ρ).

Fig. 3.1 compares the average value of the empirical logistic loss achieved by each of the
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(a) ρ = 0
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Figure 3.1: Comparison of the average (empirical) logistic loss at solutions obtained via
GraSP, GraSP with `2-penalty, LASSO, the elastic-net regularization, and Logit-OMP. The
results of both GraSP methods with “debiasing” are also included. The average loss at the
true parameter and one standard deviation interval around it are plotted as well.
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Figure 3.1: continued from the previous page
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considered algorithms for a wide range of “sampling ratio” m/n. For GraSP, the curves la-

belled by GraSP and GraSP + `2 corresponding to the cases where the algorithm is applied

to unregularized and `2-regularized logistic loss, respectively. Furthermore, the results of

GLMnet for the LASSO and the elastic net regularization are labelled by GLMnet (`1) and

GLMnet (elastic net), respectively. The simulation result of the Logit-OMP algorithm is

also included. To contrast the obtained results we also provided the average of empirical

logistic loss evaluated at the true parameter and one standard deviation above and be-

low this average on the plots. Furthermore, we evaluated performance of GraSP with the

debiasing procedure described in Section 3.3.1.

As can be seen from the figure at lower values of the sampling ratio GraSP is not ac-

curate and does not seem to be converging. This behavior can be explained by the fact

that without regularization at low sampling ratios the training data is linearly separable

or has very few mislabelled samples. In either case, the value of the loss can vary signif-

icantly even in small neighborhoods. Therefore, the algorithm can become too sensitive

to the pruning step at the end of each iteration. At larger sampling ratios, however, the

loss from GraSP begins to decrease rapidly, becoming effectively identical to the loss at the

true parameter for m/n > 0.7. The results show that unlike GraSP, Logit-OMP performs

gracefully at lower sampling ratios. At higher sampling ratios, however, GraSP appears to

yield smaller bias in the loss value. Furthermore, the difference between the loss obtained

by the LASSO and the loss at the true parameter never drops below a certain threshold,

although the convex method exhibits a more stable behavior at low sampling ratios.

Interestingly, GraSP becomes more stable at low sampling ratios when the logistic loss

is regularized with the `2-norm. However, this stability comes at the cost of a bias in the

loss value at high sampling ratios that is particularly pronounced in Fig. 3.1d. Neverthe-

less, for all of the tested values of ρ, at low sampling ratios GraSP+`2 and at high sampling
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ratios GraSP are consistently closer to the true loss value compared to the other methods.

Debiasing the iterates of GraSP also appears to have a stabilizing effect at lower sampling

ratios. For GraSP with `2 regularized cost, the debiasing particularly reduced the undesir-

able bias at ρ =
√

2
2 .

Fig. 3.2 illustrates the performance of the same algorithms in terms of the relative error

‖x̂− x?‖2/‖x?‖2 where x̂ denotes the estimate that the algorithms produce. Not surpris-

ingly, none of the algorithms attain an arbitrarily small relative error. Furthermore, the pa-

rameter ρ does not appear to affect the performance of the algorithms significantly. With-

out the `2-regularization, at high sampling ratios GraSP provides an estimate that has a

comparable error versus the `1-regularization method. However, for mid to high sampling

ratios both GraSP and GLMnet methods are outperformed by Logit-OMP. At low to mid

sampling ratios, GraSP is unstable and does not converge to an estimate close to the true

parameter. Logit-OMP shows similar behavior at lower sampling ratios. Performance of

GraSP changes dramatically once we consider the `2-regularization and/or the debiasing

procedure. With `2-regularization, GraSP achieves better relative error compared to GLM-

net and ordinary GraSP for almost the entire range of tested sampling ratios. Applying the

debiasing procedure has improved the performance of both GraSP methods except at very

low sampling ratios. These variants of GraSP appear to perform better than Logit-OMP for

almost the entire range of m/n.

Real Data

We also conducted the same simulation on some of the data sets used in NIPS 2003 Work-

shop on feature extraction Guyon et al. (2004), namely the ARCENE and DEXTER data

sets. The logistic loss values at obtained estimates are reported in Tables 3.1 and 3.2. For

each data set we applied the sparse logistic regression for a range of sparsity level s. The
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Figure 3.2: Comparison of the average relative error (i.e., ‖x̂− x?‖2/‖x?‖2) in logarithmic
scale at solutions obtained via GraSP, GraSP with `2-penalty, LASSO, the elastic-net reg-
ularization, and Logit-OMP. The results of both GraSP methods with “debiasing” are also
included.
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Figure 3.2: continued from the previous page.
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columns indicated by “G” correspond to different variants of GraSP. Suffixes `2 and “d” in-

dicate the `2-regularization and the debiasing are applied, respectively. The columns indi-

cated by `1 and E-net correspond to the results of the `1-regularization and the elastic-net

regularization methods that are performed using the GLMnet package. The last column

contains the result of the Logit-OMP algorithm.

The results for DEXTER data set show that GraSP variants without debiasing and the

convex methods achieve comparable loss values in most cases, whereas the convex meth-

ods show significantly better performance on the ARCENE data set. Nevertheless, except

for a few instances where Logit-OMP has the best performance, the smallest loss values in

both data sets are attained by GraSP methods with debiasing step.

3.6 Summary and Discussion

In many applications understanding high dimensional data or systems that involve these

types of data can be reduced to identification of a sparse parameter. For example, in gene

selection problems researchers are interested in locating a few genes among thousands of

genes that cause or contribute to a particular disease. These problems can usually be cast as

sparsity-constrained optimizations. We introduced a greedy algorithm called the Gradient

Support Pursuit(GraSP) as an approximate solver for a wide range of sparsity-constrained

optimization problems.

Table 3.1: ARCENE

s G Gd G`2 G`2d `1 E-net Logit-OMP

5 5.89E+1 5.75E-1 2.02E+1 5.24E-1 5.59E-1 6.43E-1 2.23E-1
10 3.17E+2 5.43E-1 3.71E+1 4.53E-1 5.10E-1 5.98E-1 5.31E-7
15 3.38E+2 6.40E-7 5.94 1.42E-7 4.86E-1 5.29E-1 5.31E-7
20 1.21E+2 3.44E-7 8.82 3.08E-8 4.52E-1 5.19E-1 5.31E-7
25 9.87E+2 1.13E-7 4.46E+1 1.35E-8 4.18E-1 4.96E-1 5.31E-7
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Table 3.2: DEXTER

s G Gd G`2 G`2d `1 E-net Logit-OMP

5 7.58 3.28E-1 3.30 2.80E-1 5.75E-1 6.08E-1 2.64E-1
10 1.08 1.79E-1 4.33E-1 1.28E-1 5.23E-1 5.33E-1 1.79E-1
15 6.06 1.71E-1 3.35E-1 1.17E-1 4.88E-1 4.98E-1 1.16E-1
20 1.30 8.84E-2 1.79E-1 8.19E-2 4.27E-1 4.36E-1 4.60E-2
25 1.17 2.51E-7 2.85E-1 1.17E-2 3.94E-1 4.12E-1 4.62E-3
30 3.04E-1 5.83E-7 2.65E-1 1.77E-7 3.70E-1 3.88E-1 2.88E-7
35 6.22E-1 2.08E-7 2.68E-1 1.19E-7 3.47E-1 3.72E-1 2.14E-7
40 5.38E-1 2.01E-7 6.30E-2 1.27E-7 3.31E-1 3.56E-1 2.14E-7
45 3.29E-1 2.11E-7 1.05E-1 1.47E-7 3.16E-1 3.41E-1 2.14E-7
50 2.06E-1 1.31E-7 5.66E-2 1.46E-7 2.87E-1 3.11E-1 2.14E-7
55 3.61E-2 1.20E-7 8.40E-2 1.31E-7 2.80E-1 2.89E-1 2.14E-7
60 1.18E-1 2.46E-7 5.70E-2 1.09E-7 2.66E-1 2.82E-1 2.14E-7
65 1.18E-1 7.86E-8 2.87E-2 9.47E-8 2.59E-1 2.75E-1 2.14E-7
70 8.92E-2 1.17E-7 2.23E-2 8.15E-8 2.52E-1 2.69E-1 2.14E-7
75 1.03E-1 8.54E-8 3.93E-2 7.94E-8 2.45E-1 2.69E-1 2.14E-7

We provide theoretical convergence guarantees based on the notions of a Stable Re-

stricted Hessian (SRH) for smooth cost functions and a Stable Restricted Linearization

(SRL) for non-smooth cost functions, both of which are introduced in this chapter. Our

algorithm generalizes the well-established sparse recovery algorithm CoSaMP that merely

applies in linear models with squared error loss. The SRH and SRL also generalize the

well-known Restricted Isometry Property for sparse recovery to the case of cost functions

other than the squared error. To provide a concrete example we studied the requirements

of GraSP for `2-regularized logistic loss. Using a similar approach one can verify SRH con-

dition for loss functions that have Lipschitz-continuous gradient that incorporates a broad

family of loss functions.

At medium- and large-scale problems computational cost of the GraSP algorithm is

mostly affected by the inner convex optimization step whose complexity is polynomial in s.

On the other hand, for very large-scale problems, especially with respect to the dimension
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of the input, n, the running time of the GraSP algorithm will be dominated by evaluation

of the function and its gradient, whose computational cost grows with n. This problem

is common in algorithms that only have deterministic steps; even ordinary coordinate-

descent methods have this limitation (Nesterov, 2012). Similar to improvements gained

by using randomization in coordinate-descent methods (Nesterov, 2012), introducing ran-

domization in the GraSP algorithm could reduce its computational complexity at large-

scale problems. This extension is an interesting research topic for future work.
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1-bit Compressed Sensing

4.1 Background

Quantization is an indispensable part of digital signal processing and digital communica-

tions systems. To incorporate CS methods in these systems, it is thus necessary to analyze

and evaluate them considering the effect of measurement quantization. There has been a

growing interest in quantized CS in the literature (Laska et al., 2009; Dai et al., 2009; Sun

and Goyal, 2009; Zymnis et al., 2010; Jacques et al., 2011; Laska et al., 2011b), particu-

larly the extreme case of quantization to a single bit dubbed 1-bit Compressed Sensing

(Boufounos and Baraniuk, 2008). As mentioned in Chapter 2, in 1-bit CS problems only

the sign of linear measurements are recorded. The advantage of this acquisition scheme is

that it can be implemented using simple hardware that is not expensive and can operate

at very high sampling rates.

As in standard CS, the algorithms proposed for the 1-bit CS problem can be catego-

rized into convex methods and non-convex greedy methods. Boufounos and Baraniuk

(2008) proposed an algorithm for 1-bit CS reconstruction that induces sparsity through
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the `1-norm while penalizes incosistency with the 1-bit sign measurements via a convex

regularization term. In a noise-free scenario, the 1-bit measurements do not convey any

information about the length of the signal. Therefore, the algorithm in (Boufounos and

Baraniuk, 2008), as well as other 1-bit CS algorithms, aim at accurate estimation of the

normalized signal. Requiring the 1-bit CS estimate to lie on the surface of the unit-ball

imposes a non-convex constraint in methods that perform an (approximate) optimization,

even those that use the convex `1-norm to induce sparsity. Among greedy 1-bit CS algo-

rithms, an algorithm called Matching Sign Pursuit (MSP) is proposed in (Boufounos, 2009)

based on the CoSaMP algorithm (Needell and Tropp, 2009). This algorithm is empirically

shown to perform better than standard CoSaMP algorithm for estimation of the normal-

ized sparse signal. Laska et al. (2011a) propose the Restricted-Step Shrinkage (RSS) algo-

rithm for 1-bit CS problems. This algorithm, which is similar to trust-region algorithms in

non-convex optimization, is shown to converge to a stationary point of the objective func-

tion regardless of the initialization. More recently, Jacques et al. (2013) derived a lower

bound on the best achievable reconstruction error of any 1-bit CS algorithm in noise-free

scenarios. Furthermore, using the notion of “binary stable embeddings”, they have shown

that Gaussian measurement matrices can be used for 1-bit CS problems both in noisy and

noise-free regime. The Binary Iterative Hard Thresholding (BIHT) algorithm is also pro-

posed in (Jacques et al., 2013) and shown to have favorable performance compared to the

RSS and MSP algorithms through numerical simulations. For robust 1-bit CS in presence

of noise, Yan et al. (2012) also proposed the Adaptive Outlier Pursuit (AOP) algorithm.

In each iteration of the AOP , first the sparse signal is estimated similar to BIHT with the

difference that the potentially corrupted measurements are excluded. Then with the new

signal estimate fixed, the algorithm updates the list of likely corrupted measurements.

The AOP is shown to improve on performance of BIHT through numerical simulations.
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Plan and Vershynin (2011) proposed a linear program to solve the 1-bit CS problems in a

noise-free scenario. The algorithm is proved to provide accurate solutions, albeit using a

sub-optimal number of measurements. Furthermore, in (Plan and Vershynin, 2013) a con-

vex program is proposed that is robust to noise in 1-bit measurements and achieves the

optimal number of measurements.

4.2 Problem Formulation

We cast the 1-bit CS problem in the framework of statistical parametric estimation which

is also considered in (Zymnis et al., 2010). In 1-bit CS, binary measurements y ∈ {±1} of

a signal x? ∈ Rn are collected based on the model

y = sgn (〈a,x?〉+ e) , (4.1)

where a is a measurement vector and e denotes an additive noise with distributionN
(
0,σ2

)
.

It is straightforward to show the conditional likelihood of y given a and signal x can be

written as

Pr {y | a; x} = Φ

(
y
〈a,x〉
σ

)
,

with Φ (·) denoting the standard normal cumulative distribution function (CDF). Then,

for measurement pairs {(ai, yi)}mi=1the MLE loss function is given by

fMLE (x) := − 1

m

m∑
i=1

log

(
Φ

(
yi
〈ai,x〉
σ

))
.

Note, however, that at high Signal-to-Noise Ratio (SNR) regime this function has erratic

behavior. To observe this behavior, rewrite fMLE as

fMLE (x) =
1

m

m∑
i=1

gη

(
yi

〈
ai,

x

‖x‖2

〉)
,

46



Chapter 4. 1-bit Compressed Sensing

where η :=
‖x‖2
σ is the SNR and gω (t) := − log Φ (ωt) for all ω ≥ 0. As η → +∞ the function

gη (t) tends to

g∞ (t) :=


0 t > 0

log 2 t = 0

+∞ t < 0

.

Therefore, as the SNR increases to infinity fMLE (x) tends to a sum of discontinuous func-

tions that is difficult to handle in practice. Whether the noise level is too low or the signal

too strong relative to the noise, in a high SNR scenario the measurement vectors are likely

to become linearly separable with respect to the corresponding binary measurements. In

these cases, the minimizer of fMLE would be pushed to infinity resulting in large estimation

error.

To avoid the problems mentioned above we consider a modified loss function

f0 (x) := − 1

m

m∑
i=1

log (Φ (yi 〈ai,x〉)) , (4.2)

while we merely use an alternative formulation of (4.1) given by

y = sgn (η 〈a,x?〉+ e) ,

in which η > 0 denotes the true SNR, x? is assumed to be unit-norm, and e ∼ N (0, 1).

The aim is accurate estimation of the unit-norm signal x? which is assumed to be s-sparse.

Disregarding computational complexity, the candidate estimator would be

arg min
x

f0 (x) s.t. ‖x‖0 ≤ s and ‖x‖2 ≤ 1. (4.3)

However, finding the exact solution (4.3) may be computationally intractable, thereby we
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merely focus on approximate solutions to this optimization problem.

4.3 Algorithm

In this section we introduce a modified version of the GraSP algorithm, outlined in Algo-

rithm 2, for estimation of bounded sparse signals associated with a cost function. While in

this chapter the main goal is to study the 1-bit CS problem and in particular the objective

function described by (4.2), we state performance guarantees of Algorithm 2 in more gen-

eral terms. As in GraSP, in each iteration first the 2s coordinates at which the gradient of

the cost function at the iterate x(t) has the largest magnitudes are identified. These coordi-

nates, denoted by Z , are then merged with the support set of x(t) to obtain the set T in the

second step of the iteration. Then, as expressed in line 3 of Algorithm 2, a crude estimate b

is computed by minimizing the cost function over vectors of length no more than r whose

supports are subsets of T . Note that this minimization would be a convex program and

therefore tractable, provided that the sufficient conditions proposed in Section 4.4 hold.

In the final step of the iteration (i.e., line 4) the crude estimate is pruned to its best s-term

approximation to obtain the next iterate x(t+1). By definition we have ‖b‖2 ≤ r, thus the

new iterate remains in the feasible set (i.e.,
∥∥x(t+1)

∥∥
2
≤ r).

4.4 Accuracy Guarantees

In order to provide accuracy guarantees for Algorithm 2, we rely on the notion of SRH

described in Definition 3.1 with a slight modification in its definition. The original defi-

nition of SRH basically characterizes the cost functions that have bounded curvature over

sparse canonical subspaces, possibly at locations arbitrarily far from the origin. However,

we only require the bounded curvature condition to hold at locations that are within a

48



Chapter 4. 1-bit Compressed Sensing

Algorithm 2: GraSP with Bounded Thresholding

input :
s desired sparsity level
r radius of the feasible set
f (·) the cost function

t←− 0

x(t) ←− 0
repeat

1 Z ←− supp
([
∇f

(
x(t)
)]

2s

)
2 T ←− supp

(
x(t)
)
∪ Z

3 b←− arg min
x

f (x) s.t. x|T c = 0 and ‖x‖2 ≤ r
4 x(t+1) ←− bs
5 t←− t+ 1

until halting condition holds
return x(t)

sphere around the origin. More precisely, we redefine the SRH as follows.

Definition 4.1 (Stable Restricted Hessian). Suppose that f : Rn 7→ R is a twice continu-

ously differentiable function and let k < n be a positive integer. Furthermore, let αk (x)

and βk (x) be in turn the largest and smallest real numbers such that

βk (x) ‖∆‖2
2 ≤∆T∇2f (x) ∆≤ αk (x) ‖∆‖2

2, (4.4)

holds for all ∆ and x that obey |supp (∆) ∪ supp (x)| ≤ k and ‖x‖2 ≤ r. Then f is said to

have an Stable Restricted Hessian of order k with constant µk ≥ 1 in a sphere of radius

r > 0, or for brevity (µk, r)-SRH, if 1 ≤ αk (x) /βk (x) ≤ µk for all k-sparse x with ‖x‖2 ≤ r.

Theorem 4.1. Let x be a vector such that ‖x‖0 ≤ s and ‖x‖2 ≤ r. If the cost function f (x) have

(µ4s, r)-SRH corresponding to the curvature bounds α4s (x) and β4s (x) in (4.4), then iterates

of Algorithm 2 obey∥∥∥x(t+1) − x
∥∥∥

2
≤
(
µ2

4s − µ4s

) ∥∥∥x(t) − x
∥∥∥

2
+ 2 (µ4s + 1) ε,
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where ε obeys ‖[∇f (x)]3s‖2 ≤ ε β4s (x) for all x with ‖x‖0 ≤ 4s and ‖x‖2 ≤ r.

The immediate implication of this theorem is that if the 1-bit CS loss f0 (x) has (µ4s, 1)-

SRH with µ4s ≤ 1+
√

3
2 then we have

∥∥x(t) − x?
∥∥

2
≤ 2−t‖x?‖2 + 2

(
3 +
√

3
)
ε.

Proof of Theorem 4.1 is almost identical to the proof of Theorem 3.1. For brevity we

will provide a proof sketch in Appendix B and elaborate only on the more distinct parts of

the proof and borrow the remaining parts from Appendix A.

4.5 Simulations

In our simulations using synthetic data we considered signals of dimensionality n = 1000

that are s-sparse with s = 10, 20, or 30. The non-zero entries of the signal constitute a

vector randomly drawn from the surface of the unit Euclidean ball in Rs. The m× n mea-

surement matrix has iid standard Gaussian entries with m varying between 100 and 2000

in steps of size 100. We also considered three different noise variances σ2 corresponding

to input SNR η = 20dB, 10dB, and 0dB. Figures 4.1–4.5 illustrate the average performance

of the considered algorithm over 200 trials versus the sampling ratio (i.e., m/n). In these

figures, the results of Algorithm 2 considering f0 and fMLE as the objective function are

demarcated by GraSP and GrasP-η, respectively. Furthermore, the results corresponding

to BIHT algorithm with one-sided `1 and `2 objective functions are indicated by BIHT and

BIHT-`2, respectively. We also considered the `0-constrained optimization proposed by

Plan and Vershynin (2013) which we refer to as PV-`0. While Plan and Vershynin (2013)

mostly focused on studying the convex relaxation of this method using `1-norm, as shown

in Appendix B the solution to PV-`0 can be derived explicitly in terms of the one-bit mea-

surements, the measurement matrix, and the sparsity level. We do not evaluate the convex

solver proposed in (Plan and Vershynin, 2013) because we did not have access to an ef-

ficient implementation of this method. Furthermore, this convex solver is expected to be
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inferior to PV-`0 in terms of accuracy because it operates on a feasible set with larger mean

width (see Plan and Vershynin, 2013, Theorem 1.1). With the exception of the non-iterative

PV-`0, the other four algorithms considered in our simulations are iterative; they are con-

figured to halt when they produce an estimate whose 1-bit measurements and the real

1-bit measurements have a Hamming distance smaller than an η-dependent threshold.

Figure 4.1 illustrates performance of the considered algorithms in terms of the angu-

lar error between the normalized estimate x̂ and the true signal x? defined as AE (x̂) :=

1
π cos−1 〈x̂,x?〉. As can be seen from the figure, with higher input SNR (i.e., η) and less

sparse target signals the algorithms incur larger angular error. While there is no signifi-

cant difference in performance of GaSP, GraSP-η, and BIHT-`2 for the examined values of

η and s, the BIHT algorithm appears to be sensitive to η. At η = 20dB and low sampling

ratios BIHT outperforms the other methods by a noticeable margin. However, for more

noisy measurements BIHT loses its advantage and at η = 0dB it performs even poorer

than the PV-`0. PV-`0 never outperforms the two variants of GraSP or the BIHT-`2, but the

gap between their achieved angular error decreases as the measurements become more

noisy.

The reconstruction SNR of the estimates produced by the algorithms are compared in

Figure 4.2. The reconstruction SNR conveys the same information as the angular error as

it can be calculated through the formula

R-SNR (x̂) := −20 log10 ‖x̂− x?‖2

= −10 log10 (2− 2 cos AE (x̂)) .

However, it magnifies small differences between the algorithms that were difficult to trace

using the angular error. For example, it can be seen in Figure 4.2 that at η = 20dB and

s = 10, GraSP-η has an advantage (of up to 2dB) in reconstruction SNR.
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Furthermore, we evaluated performance of the algorithms in terms of identifying the

correct support set of the target sparse signal by are comparing their achieved False Neg-

ative Rate

FNR =
|supp (x?) \supp (x̂)|

|supp (x?)|

and False Positive Rate

FPR =
|supp (x̂) \supp (x?)|
n− |supp (x?)|

.

Figures 4.3 and 4.4 illustrate these rates for the studied algorithms. It can be seen in Figure

4.3 that at η = 20dB, BIHT achieves a FNR slightly lower than that of the variants of GraSP,

whereas PV-`0 and BIHT-`2 rank first and second, respectively, in the highest FNR at a

distant from the other algorithms. However, as η decreases the FNR of BIHT deteriorates

relative to the other algorithms while BIHT-`2 shows improved FNR. The GraSP variants

exhibit better performance overall at smaller values of η especially with s = 10, but for

η = 10dB and at low sampling ratios BIHT attains a slightly better FNR. The relative

performance of the algorithms in terms of FPR, illustrated in Figure 4.4, is similar.

We also compared the algorithms in terms of their average execution time (T ) mea-

sured in seconds. The simulation was ran on a PC with an AMD Phenom™II X6 2.60GHz

processor and 8.00GB of RAM. The average execution time of the algorithms, all of which

are implemented in MATLAB®, is illustrated in 4.5 in log scale. It can be observed from

the figure that PV-`0 is the fastest algorithm which can be attributed to its non-iterative

procedure. Furthermore, in general BIHT-`2 requires significantly longer time compared

to the other algorithms. The BIHT, however, appears to be the fastest among the iterative

algorithms at low sampling ratio or at large values of η. The GraSP variants generally run

at similar speed, while they are faster than BIHT at low values of η and high sampling
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Chapter 4. 1-bit Compressed Sensing

ratios.

4.6 Summary

In this chapter we revisited a formulation of the 1-bit CS problem and applied a variant of

the GraSP algorithm to this problem. We showed through numerical simulations that the

proposed algorithms have robust performance in presence of noise. While at high levels of

input SNR these algorithms are outperformed by a narrow margin by the competing algo-

rithms, in low input SNR regime our algorithms show a solid performance at reasonable

computational cost.
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Chapter 5

Estimation Under Model-Based

Sparsity

5.1 Background

Beyond the ordinary, extensively studied, plain sparsity model, a variety of structured

sparsity models have been proposed in the literature (Bach, 2008; Roth and Fischer, 2008;

Jacob et al., 2009; Baraniuk et al., 2010; Bach, 2010; Bach et al., 2012; Chandrasekaran

et al., 2012; Kyrillidis and Cevher, 2012a). These sparsity models are designed to cap-

ture the interdependence of the locations of the non-zero components that is known a

priori in certain applications. For instance, the wavelet transform of natural images are

often (nearly) sparse and the dependence among the dominant wavelet coefficients can be

represented by a rooted and connected tree. Furthermore, in applications such as array

processing or sensor networks, while different sensors may take different measurements,

the support set of the observed signal is identical across the sensors. Therefore, to model

this property of the system, we can compose an enlarged signal with jointly-sparse or block-
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Chapter 5. Estimation Under Model-Based Sparsity

sparse support set, whose non-zero coefficients occur as contiguous blocks.

The models proposed for structured sparsity can be divided into two types. Models

of the first type have a combinatorial construction and explicitly enforce the permitted

“non-zero patterns” (Baraniuk et al., 2010; Kyrillidis and Cevher, 2012a,b). Greedy algo-

rithms have been proposed for the least squares regression with true parameters belong-

ing to such combinatorial sparsity models (Baraniuk et al., 2010; Kyrillidis and Cevher,

2012b). Models of the second type capture sparsity patterns induced by the convex penalty

functions tailored for specific estimation problems. For example, consistency of linear re-

gression with mixed `1/`2-norm regularization in estimation of group sparse signals hav-

ing non-overlapping groups is studied in (Bach, 2008). Furthermore, a different convex

penalty to induce group sparsity with overlapping groups is proposed in (Jacob et al.,

2009). In (Bach, 2010), using submodular functions and their Lovàsz extension, a more

general framework for design of convex penalties that induce given sparsity patterns is

proposed. In (Chandrasekaran et al., 2012) a convex signal model is proposed that is gen-

erated by a set of base signals called “atoms”. The model can describe not only plain and

structured sparsity, but also low-rank matrices and several other low-dimensional models.

We refer readers to (Duarte and Eldar, 2011; Bach et al., 2012) for extensive reviews on the

estimation of signals with structured sparsity.

In addition to linear regression problems under structured sparsity assumptions, non-

linear statistical models have been studied in the convex optimization framework (Roth

and Fischer, 2008; Bach, 2008; Jenatton et al., 2011; Tewari et al., 2011). For example, us-

ing the signal model introduced in (Chandrasekaran et al., 2012), minimization of a convex

function obeying a restricted smoothness property is studied in (Tewari et al., 2011) where

a coordinate-descent type of algorithm is shown to converge to the minimizer at a sublin-

ear rate. In this formulation and other similar methods that rely on convex relaxation one
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Chapter 5. Estimation Under Model-Based Sparsity

needs to choose a regularization parameter to guarantee the desired statistical accuracy.

However, choosing the appropriate value of this parameter may be intractable. Further-

more, the convex signal models usually provide an approximation of the ideal structures

the estimates should have, while in certain tasks such as variable selection solutions are

required to exhibit the exact structure considered. Therefore, in such tasks, convex opti-

mization techniques may yield estimates that do not satisfy the desired structural prop-

erties, albeit accurately approximating the true parameter. These shortcomings motivate

application of combinatorial sparsity structures in nonlinear statistical models, extend-

ing prior results such as Baraniuk et al. (2010); Kyrillidis and Cevher (2012b) that have

focused exclusively on linear models.

Among the non-convex greedy algorithms, a generalization of CS is considered in (Blu-

mensath, 2010) where the measurement operator is a nonlinear map and the union of sub-

spaces is assumed as the signal model. As mentioned in Chapter 3 this formulation admits

only a limited class of objective functions that are described using a norm. Furthermore,

in (Lozano et al., 2011) proposed a generalization of the Orthogonal Matching Pursuit

algorithm (Pati et al., 1993) that is specifically designed for estimation of group sparse

parameters in GLMs.

In this chapter we study the Projected Gradient Descent method to approximate the min-

imizer of a cost function subject to a model-based sparsity constraint. The sparsity model

considered in this chapter is similar to the models in (Baraniuk et al., 2010; Kyrillidis and

Cevher, 2012b) with minor differences in the definitions. To guarantee the accuracy of the

algorithm our analysis requires the cost function to have a Stable Model-Restricted Hes-

sian (SMRH) as defined in Section 5.3. Using this property we show that for any given ref-

erence point in the considered model, each iteration shrinks the distance to the reference

point up to an approximation error. As an example, Section 5.3 considers the cost func-
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Chapter 5. Estimation Under Model-Based Sparsity

tions that arise in GLMs and discusses how the proposed sufficient condition (i.e., SMRH)

can be verified and how large the approximation error of the algorithm is. To make pre-

cise statements on the SMRH and on the size of the approximation error we assume some

extra properties on the cost function and/or the data distribution. Finally, we discuss and

conclude in Section 5.5.

Notation. To proceed, first we introduce a few more notations used specifically in this

chapter and Appendix C. For two non-empty families of sets F1 and F2 we write F1 d F2

to denote another family of sets given by {X1 ∪ X2 | X1 ∈ F1 and X2 ∈ F2}. Moreover, for

any non-empty family of setsF for conciseness we setF j = Fd. . .dF where the operation

d is performed j−1 times. For generality, in this chapter we assume the objective functions

are defined over a finite-dimensional Hilbert space H. The inner product associated with

this Hilbert space is written as 〈·, ·〉. The norm induced by this inner product is denoted by

‖·‖.

5.2 Problem Statement and Algorithm

To formulate the problem of minimizing a cost function subject to structured sparsity

constraints, first we provide a definition of the sparsity model. This definition is an alter-

native way of describing the Combinatorial Sparse Models in (Kyrillidis and Cevher, 2012a).

In comparison, our definition merely emphasizes the role of a family of index sets as a

generator of the sparsity model.

Definition 5.1. Suppose that n and k are two positive integers with k � n. Furthermore,

denote by Ck a family of some non-empty subsets of [n] that have cardinality at most k. The

set
⋃
S∈Ck 2S is called a sparsity model of order k generated by Ck and denoted byM (Ck).
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Chapter 5. Estimation Under Model-Based Sparsity

Remark 5.1. Note that if a set S ∈ Ck is a subset of another set in Ck, then the same sparsity

model can still be generated after removing S from Ck (i.e.,M (Ck) =M (Ck\ {S})). Thus,

we can assume that there is no pair of distinct sets in Ck that one is a subset of the other.

In this chapter we aim to approximate the solution to the optimization problem

arg min
x∈H

f (x) s.t. supp (x) ∈M (Ck) , (5.1)

where f : H 7→ R is a cost function with H being a n-dimensional real Hilbert space, and

M (Ck) a given sparsity model described by Definition 5.1. To approximate a solution x̂ to

(5.1) we use a Projected Gradient Descent (PGD) method. PGD is one of the elementary

tools in convex optimization for constrained minimization. For a differentiable convex ob-

jective function f (·), a convex set Q, and a projection operator PQ (·) defined by

PQ (x0) = arg min
x
‖x− x0‖ s.t. x ∈ Q, (5.2)

the PGD algorithm solves the minimization

arg min
x

f (x) s.t. x ∈ Q

via the iterations outlined in Algorithm 3. To find an approximate solution to (5.1), how-

ever, we use a non-convex PGD method with the feasible set Q ≡ M (Ck) ∩ BH (r), where

BH (r) := {x | ‖x‖ ≤ r} is the centered ball of radius r with respect to the norm of the

Hilbert spaceH. The corresponding projection operator, denoted by PCk,r (·), is a mapping

PCk,r : H 7→ H that at any given point x0 ∈ H evaluates to a solution to

arg min
x∈H
‖x− x0‖ s.t. supp (x) ∈M (Ck) and ‖x‖ ≤ r. (5.3)

Remark 5.2. In parametric estimation problems, fidelity of the estimate is measured by the

cost function f (·) that depends on observations generated by an underlying true param-
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Algorithm 3: Projected Gradient Descent
input : Objective function f (·) and an operator PQ (·) that performs projection onto

the feasible set Q
t←− 0 , x(t) ←− 0
repeat

1 choose step-size η(t) > 0

2 z(t) ←− x(t) − η(t)∇f
(
x(t)
)

3 x(t+1) ←− PQ
(
z(t)
)

4 t←− t+ 1

until halting condition holds
return x(t)

eter x?. As mentioned in Remark 3.8, it is more desired in these problems to estimate x?

rather than the solution x̂ of (5.1), as it describes the data. Our analysis allows evaluating

the approximation error of the Algorithm 3 with respect to any parameter vector in the

considered sparsity model including x̂ and x?. However, the approximation error with re-

spect to the statistical truth x? can be simplified and interpreted to a greater extent. We

elaborate more on this in Section 5.3.

Remark 5.3. Assuming that for every S ∈ Ck the cost function has a unique minimum

over the set {x | supp (x) ⊆ S and ‖x‖ ≤ r}, the operator PCk,r (·) can be defined without

invoking the axiom of choice because there are only a finite number of choices for the set S.

Furthermore, the constraint ‖x‖ ≤ r in (5.3) is necessary to validate SMRH as explained

in 3.2. Finally, the exact projection onto the sparsity modelM (Ck) might not be tractable.

One may desire to show that accuracy can be guaranteed even using an inexact projection

operator, at the cost of an extra error term. Existence and complexity of algorithms that

find the desired exact or approximate projections, disregarding the length constraint in

(5.3) (i.e., PCk,+∞ (·)), are studied in (Kyrillidis and Cevher, 2012a,b) for several interest-

ing structured sparsity models. Also, in the general case where r < +∞ the projection

PCk,r (x) can be derived from PCk,+∞ (x) (see Lemma C.2 in Appendix C). Furthermore,
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it is straightforward to generalize the guarantees in this chapter to cases where only ap-

proximate projection is tractable. However, we do not attempt it here; our focus is to study

the algorithm when the cost function is not necessarily quadratic. Instead, we apply the

results to certain statistical estimation problems with non-linear models and we derive

bounds on the statistical error of the estimate.

5.3 Theoretical Analysis

5.3.1 Stable Model-Restricted Hessian

In order to demonstrate accuracy of estimates obtained using Algorithm 3 we require a

variant of the SRH conditions proposed in Chapters 3 and 4 to hold. In contrast with Def-

initions 3.1 and 4.1, here we require this condition to hold merely for the signals that

belong to the considered model and the curvature bounds are assumed to be global con-

stants. Furthermore, similar to Definition 4.1, we explicitly bound the length of the vectors

at which the condition should hold. The condition we rely on, the Stable Model-Restricted

Hessian (SMRH), can be formally defined as follows.

Definition 5.2. Let f : H 7→ R be a twice continuously differentiable function. Further-

more, let αCk and βCk be in turn the largest and smallest real numbers such that

βCk‖∆‖
2 ≤

〈
∆,∇2f (x) ∆

〉
≤ αCk‖∆‖

2, (5.4)

holds for all ∆ and x such that supp (∆) ∪ supp (x) ∈ M (Ck) and ‖x‖ ≤ r. Then f is said

to have a Stable Model-Restricted Hessian with respect to the modelM (Ck) with constant

µCk ≥ 1 in a sphere of radius r > 0, or in short (µCk ,r)-SMRH, if 1 ≤ αCk/βCk ≤ µCk .

Remark 5.4. If the true parameter is unbounded, violating the condition of 5.2, we may

incur an estimation bias as quantified in Theorem 5.1.
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5.3.2 Accuracy Guarantee

Using the notion of SMRH we can now state the main theorem.

Theorem 5.1. Consider the sparsity modelM (Ck) for some k ∈ N and a cost function f :H 7→ R

that satisfies the
(
µC3k

, r
)

-SMRH condition with parameters αC3k and βC3k as in (5.4). If η? =

2/
(
αC3k

+ βC3k

)
then for any x ∈M (Ck) with ‖x‖ ≤ r the iterates of Algorithm 3 obey

∥∥∥x(t+1) − x
∥∥∥ ≤ 2γ(t)

∥∥∥x(t) − x
∥∥∥+ 2η(t)

∥∥∇f (x)|I
∥∥, (5.5)

where γ(t) = η(t)

η?

µC3
k
−1

µC3
k

+1 +
∣∣∣η(t)η? − 1

∣∣∣ and I = supp
(

PC2k,r
(∇f (x))

)
.

Remark 5.5. One should choose the step size to achieve a contraction factor 2γ(t) that

is as small as possible. Straightforward algebra shows that the constant step-size η(t) =

η? is optimal, but this choice may not be practical as the constants αC3k and βC3k
might

not be known. Instead, we can always choose the step-size such that 1/αC3k
≤ η(t) ≤

1/βC3k
provided that the cost function obeys the SMRH condition. It suffices to set η(t) =

1/
〈
∆,∇2f (x) ∆

〉
for some ∆,x ∈ H such that supp (∆) ∪ supp (x) ∈ M

(
C3
k

)
. For this

choice of η(t), we have γ(t) ≤ µC3k − 1.

Corollary 5.1. A fixed step-size η > 0 corresponds to a fixed contraction coefficient γ =

η
η?

µC3
k
−1

µC3
k

+1 +
∣∣∣ ηη? − 1

∣∣∣. In this case, assuming that 2γ 6= 1, the t-th iterate of Algorithm 3 sat-

isfies ∥∥∥x(t) − x
∥∥∥ ≤ (2γ)t ‖x‖+ 2η

1− (2γ)t

1− 2γ

∥∥∇f (x)|I
∥∥. (5.6)

In particular,

(i) if µC3k < 3 and η = η? = 2/
(
αC3k

+ βC3k

)
, or

(ii) if µC3k <
3
2 and η ∈

[
1/αC3k

, 1/βC3k

]
,
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the iterates converge to x up to an approximation error bounded above by 2η
1−2γ

∥∥∇f (x)|I
∥∥ with

contraction factor 2γ < 1.

Proof. Applying (5.5) recursively under the assumptions of the corollary and using the

identity
∑t−1

j=0 (2γ)j = 1−(2γ)t

1−2γ proves (5.6). In the first case, if µC3k < 3 and η = η? =

2/
(
αC3k

+ βC3k

)
we have 2γ < 1 by definition of γ. In the second case, one can deduce from

η ∈
[
1/αC3k

, 1/βC3k

]
that |η/η? − 1| ≤

µC3
k
−1

2 and η/η? ≤
µC3

k
+1

2 where equalities are attained

simultaneously at η = 1/βC3k
. Therefore, γ ≤ µC3k

− 1 < 1/2 and thus 2γ < 1. Finally,

in both cases it immediately follows from (5.6) that the approximation error converges to

2η
1−2γ

∥∥∇f (x)|I
∥∥ from below as t→ +∞.

5.4 Example: Generalized Linear Models

In this section we study the SMRH condition for objective functions that arise in General-

ized Linear Models (GLMs) as described in Section 2.2.1. Recall from Chapter 2 that these

objective functions have the form

f (x) =
1

m

m∑
i=1

ψ (〈ai,x〉)− yi 〈ai,x〉 ,

where ψ (·) is called the log-partition function. For linear, logistic, and Poisson models, for

instance, we have log-partition functions ψlin (t) = t2/2σ2, ψlog (t) = log (1 + exp (t)), and

ψPois (t) = exp (t), respectively.

67



Chapter 5. Estimation Under Model-Based Sparsity

5.4.1 Verifying SMRH for GLMs

Assuming that the log-partition function ψ (·) is twice continuously differentiable, the

Hessian of f (·) is equal to

∇2f (x) =
1

m

m∑
i=1

ψ′′ (〈ai,x〉) aia
T
i .

Under the assumptions for GLMs, it can be shown that ψ′′ (·) is non-negative (i.e., ψ (·) is

convex). For a given sparsity model generated by Ck let S be an arbitrary support set in Ck

and suppose that supp (x) ⊆ S and ‖x‖ ≤ r . Furthermore, define

Dψ,r (u) := max
t∈[−r,r]

ψ′′ (tu) and dψ,r (u):= min
t∈[−r,r]

ψ′′ (tu) .

Using the Cauchy-Schwarz inequality we have |〈ai,x〉| ≤ r‖ai|S‖ which implies

1

m

m∑
i=1

dψ,r (‖ai|S‖) ai|S ai|TS 4 ∇2
Sf (x)4

1

m

m∑
i=1

Dψ,r (‖ai|S‖) ai|S ai|TS .

These matrix inequalities are precursors of (5.4). Imposing further restriction on the dis-

tribution of the covariate vectors {ai}mi=1 allows application of the results from random

matrix theory regarding the extreme eigenvalues of random matrices (see e.g., (Tropp,

2012) and (Hsu et al., 2012)).

For example, following the same approach explained in Section 3.4, for the logistic

model where ψ ≡ ψlog we can show thatDψ,r (u) = 1
4 and dψ,r (u) = 1

4sech2
(
ru
2

)
. Assuming

that the covariate vectors are iid instances of a random vectors whose length almost surely

bounded by one, we obtain dψ,r (u) ≥ 1
4sech2

(
r
2

)
. Using the matrix Chernoff inequality

(Tropp, 2012) the extreme eigenvalues of 1
mASA

T
S can be bounded with probability 1 −

exp (log k − Cm) for some constant C > 0 (see Corollary 3.1 for detailed derivations).

Using these results and taking the union bound over all S ∈ Ck we obtain bounds for the

extreme eigenvalues of ∇2
Sf (x) that hold uniformly for all sets S ∈ Ck with probability
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1− exp (log (k |Ck|)− Cm). Thus (5.4) may hold if m = O (log (k |Ck|)).

5.4.2 Approximation Error for GLMs

Suppose that the approximation error is measured with respect to x⊥ = PCk,r (x?) where

x? is the statistical truth in the considered GLM. It is desirable to further simplify the

approximation error bound provided in Corollary 5.1 which is related to the statistical

precision of the estimation problem. The corollary provides an approximation error that

is proportional to
∥∥∇T f (x⊥)∥∥ where T = supp

(
PC2k,r

(
∇f

(
x⊥
)))

. We can write

∇T f
(
x⊥
)

=
1

m

m∑
i=1

(
ψ′
(〈

ai,x
⊥
〉)
− yi

)
ai|T ,

which yields
∥∥∇T f (x⊥)∥∥ = ‖AT z‖ where A = 1√

m

[
a1 a2 · · · am

]
and z|{i} = zi =

ψ′(〈ai,x
⊥〉)−yi√
m

. Therefore, ∥∥∥∇T f (x⊥
)∥∥∥2
≤ ‖AT ‖2op‖z‖

2,

where ‖·‖op denotes the operator norm. Again using random matrix theory one can find an

upper bound for ‖AI‖op that holds uniformly for any I ∈ C2
k and in particular for I = T .

Henceforth, W > 0 is used to denote this upper bound.

The second term in the bound can be written as

‖z‖2 =
1

m

m∑
i=1

(
ψ′
(〈

ai,x
⊥
〉)
− yi

)2
.

To further simplify this term we need to make assumptions about the log-partition func-

tion ψ (·) and/or the distribution of the covariate-response pair (a, y). For instance, if ψ′ (·)

and the response variable y are bounded, as in the logistic model, then Hoeffding’s inequal-

ity implies that for some small ε > 0 we have ‖z‖2 ≤ E
[(
ψ′
(〈

a,x⊥
〉)
− y
)2]

+ ε with prob-
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ability at least 1− exp
(
−O

(
ε2m

))
. Since in GLMs the true parameter x? is the minimizer

of the expected loss E [ψ (〈a,x〉)− y 〈a,x〉 | a] we deduce that E [ψ′ (〈a,x?〉)− y | a] = 0

and hence E [ψ′ (〈a,x?〉)− y] = 0. Therefore,

‖z‖2 ≤ E
[
E
[(
ψ′
(〈

a,x⊥
〉)
− ψ′ (〈a,x?〉) +ψ′ (〈a,x?〉)− y

)2
| a
]]

+ ε

≤ E
[(
ψ′
(〈

a,x⊥
〉)
− ψ′ (〈a,x?〉)

)2
]

+ E
[(
ψ′ (〈a,x?〉)− y

)2]
+ ε.

= E
[(
ψ′
(〈

a,x⊥
〉)
− ψ′ (〈a,x?〉)

)2
]

︸ ︷︷ ︸
δ1

+ var
(
ψ′ (〈a,x?〉)− y

)
+ ε︸ ︷︷ ︸

σ2
stat

.

Then it follows from Corollary 5.1 and the fact that ‖A|I‖op ≤W that∥∥∥x(t) − x?
∥∥∥ ≤ ∥∥∥x(t) − x⊥

∥∥∥+
∥∥∥x⊥ − x?

∥∥∥︸ ︷︷ ︸
δ2

≤ (2γ)t
∥∥∥x⊥∥∥∥+

2ηW

1− 2γ
σ2

stat +
2ηW

1− 2γ
δ1 + δ2.

The total approximation error is comprised of two parts. The first part is due to statistical

error that is given by 2ηW
1−2γσ

2
stat, and 2ηW

1−2γ δ1+δ2 is the second part of the error due to the bias

that occurs because of an infeasible true parameter. The bias vanishes if the true parameter

lies in the considered bounded sparsity model (i.e., x? = PCk,r (x?)).

5.5 Summary

We studied the projected gradient descent method for minimization of a real valued cost

function defined over a finite-dimensional Hilbert space, under structured sparsity con-

straints. Using previously known combinatorial sparsity models, we define a sufficient

condition for accuracy of the algorithm, the SMRH. Under this condition the algorithm

converges to the desired optimum at a linear rate up to an approximation error. Unlike
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the previous results on greedy-type methods that merely have focused on linear statisti-

cal models, our algorithm applies to a broader family of estimation problems. To provide

an example, we examined application of the algorithm in estimation with GLMs. The ap-

proximation error can also be bounded by statistical precision and the potential bias. An

interesting follow-up problem is to find whether the approximation error can be improved

and the derived error is merely a by-product of requiring some form of restricted strong

convexity through SMRH. Another problem of interest is to study the properties of the

algorithm when the domain of the cost function is not finite-dimensional.
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Chapter 6

Projected Gradient Descent for

`p-constrained Least Squares

6.1 Background

As mentioned in Chapter 2, to avoid the combinatorial computational cost of (2.2), often

the `0-norm is substituted by the `1-norm to reach at a convex program. More generally,

one can approximate the `0-norm by an `p-norm ‖x‖p = (
∑n

i=1 |xi|
p)1/p for some p ∈ (0, 1]

that yields the `p-minimization

arg min
x
‖x‖p s.t. ‖Ax− y‖2 ≤ ε.

Several theoretical and experimental results (see e.g., Chartrand, 2007a; Saab et al., 2008;

Saab and Yilmaz, 2010) suggest that `p-minimization with p ∈ (0, 1) has the advantage that

it requires fewer observations than the `1-minimization to produce accurate estimates.

However, `p-minimization is a non-convex problem for this range of p and finding the

global minimizer is not guaranteed and can be computationally more expensive than the
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`1-minimization.

An alternative approach in the framework of sparse linear regression is to solve the

sparsity-constrained least squares problem

arg min
x

1

2
‖Ax− y‖22 s.t. ‖x‖0 ≤ s, (6.1)

where s = ‖x?‖0 is given. Similar to (2.2) solving (6.1) is not tractable and approximate

solvers must be sought. Several CS algorithms jointly known as the greedy pursuits includ-

ing Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2009), Subspace Pursuit

(SP) (Dai and Milenkovic, 2009), and Compressive Sampling Matching Pursuit (CoSaMP)

(Needell and Tropp, 2009) are implicitly approximate solvers of (6.1).

As a relaxation of (6.1) one may also consider the `p-constrained least squares

arg min
x

1

2
‖Ax− y‖22 s.t. ‖x‖p ≤ R

?, (6.2)

given R? = ‖x?‖p. The Least Absolute Shrinkage and Selection Operator (LASSO) (Tib-

shirani, 1996) is a well-known special case of this optimization problem with p = 1. The

optimization problem of (6.2) typically does not have a closed-form solution, but can be

(approximately) solved using iterative PGD described in Algorithm 3. Previous studies of

these algorithms, henceforth referred to as `p-PGD, are limited to the cases of p = 0 and

p = 1. The algorithm corresponding to the case of p = 0 is recognized in the literature

as the IHT algorithm. The Iterative Soft Thresholding (IST) algorithm (Beck and Teboulle,

2009) is originally proposed as a solver of the Basis Pursuit Denoising (BPDN) (Chen et al.,

1998), which is the unconstrained equivalent of the LASSO with the `1-norm as the regu-

larization term. However, the IST algorithm also naturally describes a PGD solver of (6.2)

for p = 1 (see for e.g, Agarwal et al., 2010) by considering varying shrinkage in itera-

tions, as described in (Beck and Teboulle, 2009), to enforce the iterates to have sufficiently
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small `1-norm. The main contribution of this chapter is a comprehensive analysis of the

performance of `p-PGD algorithms for the entire regime of p ∈ [0, 1].

In the extreme case of p = 0 we have the `0-PGD algorithm which is indeed the IHT

algorithm. Unlike conventional PGD algorithms, the feasible set—the set of points that

satisfy the optimization constraints—for IHT is the non-convex set of s-sparse vectors.

Therefore, the standard analysis for PGD algorithms with convex feasible sets that relies

on the fact that projection onto convex sets defines a contraction map will no longer apply.

However, imposing extra conditions on the matrix A can be leveraged to provide conver-

gence guarantees (Blumensath and Davies, 2009; Foucart, 2012).

At p = 1 where (6.2) is a convex program, the corresponding `1-PGD algorithm has

been studied under the name of IST in different scenarios (see Beck and Teboulle, 2009,

and references therein). Ignoring the sparsity of the vector x?, it can be shown that the

IST algorithm exhibits a sublinear rate of convergence as a convex optimization algorithm

(Beck and Teboulle, 2009). In the context of the sparse estimation problems, however, faster

rates of convergence can be guaranteed for IST. For example, in (Agarwal et al., 2010) PGD

algorithms are studied in a broad category of regression problems regularized with “de-

composable” norms. In this configuration, which includes sparse linear regression via IST,

the PGD algorithms are shown to possess a linear rate of convergence provided the ob-

jective function—the squared error in our case—satisfies Restricted Strong Convexity (RSC)

and Restricted Smoothness (RSM) conditions (Agarwal et al., 2010). Although the results

provided in (Agarwal et al., 2010) consolidate the analysis of several interesting problems,

they do not readily extend to the case of `p-constrained least squares since the constraint

is not defined by a true norm.

In this chapter, by considering `p-balls of given radii as feasible sets in the general case,

we study the `p-PGD algorithms that render a continuum of sparse reconstruction algo-
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rithms, and encompass both the IHT and the IST algorithms. Note that in this chapter we

consider the observation model (2.1) with the signal, the measurement matrix, the obser-

vations, and the noise having complex valued entries, i.e., x? ∈ Cn, A ∈ Cm×n, y ∈ Cm,

and e ∈ Cm. Our results suggest that as p increases from zero to one the convergence and

robustness to noise deteriorates. This conclusion is particularly in agreement with the em-

pirical studies of the phase transition of the IST and IHT algorithms provided in (Maleki

and Donoho, 2010). Our results for `0-PGD coincides with the guarantees for IHT derived

in (Foucart, 2012). Furthermore, to the best of our knowledge the RIP-based accuracy guar-

antees we provide for IST, which is the `1-PGD algorithm, have not been derived before.

6.2 Projected Gradient Descent for `p-constrained Least Squares

In a broad range of applications where the objective function is the squared error of the

form f (x) = 1
2‖Ax− y‖22, the iterate update equation of the PGD method outlined in

Algorithm 3 reduces to

x(t+1) = PQ

(
x(t) − η(t)AH

(
Ax(t) − y

))
.

In the context of compressed sensing if (2.1) holds and Q is the `1-ball of radius ‖x?‖1

centered at the origin, Algorithm 3 reduces to the IST algorithm (except perhaps for vari-

able step-size) that solves (6.2) for p = 1. By relaxing the convexity restriction imposed on

Q the PGD iterations also describe the IHT algorithm where Q is the set of vectors whose

`0-norm is not greater than s = ‖x?‖0.

Henceforth, we refer to an `p-ball centered at the origin and aligned with the axes
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simply as an `p-ball for brevity. To proceed let us define the set

Fp (c) =

{
x ∈ Cn |

n∑
i=1

|xi|p ≤ c

}
,

for c ∈ R+, which describes an `p-ball. Although c can be considered as the radius of this

`p-ball with respect to the metric d (a,b) = ‖a− b‖pp, we call c the “p-radius” of the `p-

ball to avoid confusion with the conventional definition of the radius for an `p-ball, i.e.,

maxx∈Fp(c) ‖x‖p. Furthermore, at p = 0 where Fp (c) describes the same “`0-ball” for dif-

ferent values of c, we choose the smallest c as the p-radius of the `p-ball for uniqueness. In

this section we will show that to estimate the signal x? that is either sparse or compressible

in fact the PGD method can be applied in a more general framework where the feasible

set is considered to be an `p-ball of given p-radius. Ideally the p-radius of the feasible set

should be ‖x?‖pp, but in practice this information might not be available. In our analysis,

we merely assume that the p-radius of the feasible set is not greater than ‖x?‖pp, i.e., the

feasible set does not contain x? in its interior.

Note that for the feasible sets Q ≡ Fp (c) with p ∈ (0, 1] the minimum value in (5.2) is

always attained because the objective is continuous and the set Q is compact. Therefore,

there is at least one minimizer in Q. However, for p < 1 the set Q is nonconvex and there

might be multiple projection points in general. For the purpose of the analysis presented

in this chapter, however, any such minimizer is acceptable. Using the axiom of choice, we

can assume existence of a choice function that for every x selects one of the solutions of

(5.2). This function indeed determines a projection operator which we denote by PQ (x).

Many compressed sensing algorithms such as those of Blumensath and Davies (2009);

Dai and Milenkovic (2009); Needell and Tropp (2009); Candès (2008) rely on sufficient

conditions expressed in terms of the RIP of the matrix A. We also provide accuracy guar-

antees of the `p-PGD algorithm with the assumption that certain RIP conditions hold. The
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following definition states the RIP in its asymmetric form. This definition is previously

proposed in the literature (Foucart and Lai, 2009), though in a slightly different format.

Definition (RIP). Matrix A is said to have RIP of order k with restricted isometry constants

αk and βk if they are in order the smallest and the largest non-negative numbers such that

βk‖x‖22 ≤ ‖Ax‖22 ≤ αk‖x‖
2
2

holds for all k-sparse vectors x.

In the literature usually the symmetric form of the RIP is considered in which αk =

1+δk and βk = 1−δk with δk ∈ [0, 1]. For example, in (Foucart, 2012) the `1-minimization is

shown to accurately estimate x? provided δ2s < 3/
(
4 +
√

6
)
≈ 0.46515. Similarly, accuracy

of the estimates obtained by IHT, SP, and CoSaMP are guaranteed provided δ3s < 1/2

(Foucart, 2012), δ3s < 0.205 (Dai and Milenkovic, 2009), and δ4s <
√

2/
(
5 +
√

73
)
≈

0.38427 (Foucart, 2012), respectively.

As our first contribution, in the following theorem we show that the `p-PGD accurately

solves `p-constrained least squares provided the matrix A satisfies a proper RIP criterion.

To proceed we define

ρs =
αs − βs
αs + βs

,

which can be interpreted as the equivalent of the standard symmetric RIP constant δs.

Theorem 6.1. Let x? be an s-sparse vector whose compressive measurements are observed ac-

cording to (2.1) using a measurement matrix A that satisfies RIP of order 3s. To estimate x? via

the `p-PGD algorithm an `p-ball B̂ with p-radius ĉ (i.e., B̂ = Fp (ĉ)) is given as the feasible set

for the algorithm such that ĉ = (1− ε)p ‖x?‖pp for some1 ε ∈ [0, 1). Furthermore, suppose that

1At p = 0 we have (1− ε)0 = 1 which enforces ĉ = ‖x?‖0. In this case ε is not unique, but to make a
coherent statement we assume that ε = 0.
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the step-size η(t) of the algorithm can be chosen to obey
∣∣∣η(t)(α3s+β3s)

2 − 1
∣∣∣ ≤ τ for some τ ≥ 0. If

(1 + τ) ρ3s + τ <
1

2
(
1 +
√

2ξ (p)
)2 (6.3)

with ξ (p) denoting the function
√
p
(

2
2−p

)1/2−1/p
, then x(t), the t-th iterate of the algorithm,

obeys∥∥∥x(t) − x?
∥∥∥

2
≤ (2γ)t ‖x?‖2

+
2 (1 + τ)

1− 2γ
(1 + ξ (p))

(
ε (1 + ρ3s) ‖x?‖2 +

2
√
α2s

α3s + β3s
‖e‖2

)
+ ε‖x?‖2, (6.4)

where

γ = ((1 + τ) ρ3s + τ)
(

1 +
√

2ξ (p)
)2
. (6.5)

Remark 6.1. Note that the parameter ε indicates how well the feasible set B̂ approximates

the ideal feasible set B? = Fp
(
‖x?‖pp

)
. The terms in (6.4) that depend on ε determine the

error caused by the mismatch between B̂ and B?. Ideally, one has ε = 0 and the residual

error becomes merely dependent on the noise level ‖e‖2.

Remark 6.2. The parameter τ determines the deviation of the step-size η(t) from 2
α3s+β3s

which might not be known a priori. In this formulation, smaller values of τ are desirable

since they impose less restrictive condition on ρ3s and also result in smaller residual error.

Furthermore, we can naively choose η(t) = ‖Ax‖22/‖x‖
2
2 for some 3s-sparse vector x 6= 0 to

ensure 1/α3s ≤ η(t) ≤ 1/β3s and thus
∣∣∣η(t) α3s+β3s

2 − 1
∣∣∣ ≤ α3s−β3s

2β3s
. Therefore, we can always

assume that τ ≤ α3s−β3s
2β3s

.

Remark 6.3. Note that the function ξ (p), depicted in Fig. 6.1, controls the variation of

the stringency of the condition (6.3) and the variation of the residual error in (6.4) in

terms of p. Straightforward algebra shows that ξ (p) is an increasing function of p with
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Figure 6.1: Plot of the function ξ (p) =
√
p
(

2
2−p

) 1
2
− 1

p which determines the contraction
factor and the residual error.

ξ (0) = 0. Therefore, as p increases from zero to one, the RHS of (6.3) decreases, which

implies the measurement matrix must have a smaller ρ3s to satisfy the sufficient condition

(6.3). Similarly, as p increases from zero to one the residual error in (6.4) increases. To

contrast this result with the existing guarantees of other iterative algorithms, suppose that

τ = 0, ε = 0, and we use the symmetric form of RIP (i.e., α3s = 1 + δ3s and β3s = 1 − δ3s)

which implies ρ3s = δ3s. At p = 0, corresponding to the IHT algorithm, (6.3) reduces to

δ3s < 1/2 that is identical to the condition derived in (Foucart, 2012). Furthermore, the

required condition at p = 1, corresponding to the IST algorithm, would be δ3s < 1/8.

The guarantees stated in Theorem 6.1 can be generalized for nearly sparse or compress-

ible signals that can be defined using power laws as described in (Candès and Tao, 2006).

The following corollary provides error bounds for a general choice of x?.

Corollary 6.1. Suppose that x? is an arbitrary vector in Cn and the conditions of Theorem 6.1
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hold for x?s, then the t-th iterate of the `p-PGD algorithm provides an estimate of x?s that obeys

∥∥∥x(t) − x?
∥∥∥

2
≤ (2γ)t ‖x?s‖2 +

2 (1 + τ) (1 + ξ (p))

1− 2γ

(
ε (1 + ρ3s) ‖x?s‖2 +

2α2s

α3s+β3s
(‖x?−x?s‖2

+‖x?−x?s‖1/
√

2s
)

+
2
√
α2s

α3s+β3s
‖e‖2

)
+ ε‖x?s‖2 + ‖x? − x?s‖2.

Proof. Let ẽ = A (x? − x?s) + e. We can write y = Ax? + e = Ax?s + ẽ. Thus, we can apply

Theorem 6.1 considering x?s as the signal of interest and ẽ as the noise vector and obtain

∥∥∥x(t) − x?s

∥∥∥
2
≤ (2γ)t ‖x?s‖2 +

2 (1 + τ)

1− 2γ
(1 + ξ (p))

(
ε (1 + ρ3s) ‖x?s‖2 +

2
√
α2s

α3s + β3s
‖ẽ‖2

)
+ ε‖x?s‖2. (6.6)

Furthermore, we have

‖ẽ‖2 = ‖A (x? − x?s) + e‖2

≤ ‖A (x? − x?s)‖2 + ‖e‖2.

Then applying Proposition 3.5 of (Needell and Tropp, 2009) yields

‖ẽ‖2 ≤
√
α2s

(
‖x? − x?s‖2 +

1√
2s
‖x? − x?s‖1

)
+ ‖e‖2.

Applying this inequality in (6.6) followed by the triangle inequality∥∥∥x(t) − x?
∥∥∥

2
≤
∥∥∥x(t) − x?s

∥∥∥
2

+ ‖x? − x?s‖2

yields the desired inequality.
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6.3 Discussion

In this chapter we studied the accuracy of the Projected Gradient Descent algorithm in

solving sparse least squares problems where sparsity is dictated by an `p-norm constraint.

Assuming that one has an algorithm that can find a projection of any given point onto `p-

balls with p ∈ [0, 1], we have shown that the PGD method converges to the true signal, up

to the statistical precision, at a linear rate. The convergence guarantees in this chapter are

obtained by requiring proper RIP conditions to hold for the measurement matrix. By vary-

ing p from zero to one, these sufficient conditions become more stringent while robustness

to noise and convergence rate worsen. This behavior suggests that smaller values of p are

preferable, and in fact the PGD method at p = 0 (i.e., the IHT algorithm) outperforms the

PGD method at p > 0 in every aspect. These conclusions, however, are not definitive as we

have merely presented sufficient conditions for accuracy of the PGD method.

Unfortunately and surprisingly, for p ∈ (0, 1) the algorithm for projection onto `p-balls

is not as simple as the cases of p = 0 and p = 1, leaving practicality of the algorithm

unclear for the intermediate values p. We have shown in the Appendix D that a projection

x⊥ of point x ∈ Cn has the following properties

(i)
∣∣x⊥i ∣∣ ≤ |xi| for all i ∈ [n] while there is at most one i ∈ [n] such that

∣∣x⊥i ∣∣ < 1−p
2−p |xi|,

(ii) Arg (xi) = Arg
(
x⊥i
)

for i ∈ [n],

(iii) if |xi| > |xj | for some i, j ∈ [n] then
∣∣x⊥i ∣∣ ≥ ∣∣∣x⊥j ∣∣∣, and

(iv) there exist λ ≥ 0 such that for all i ∈ supp
(
x⊥
)

we have
∣∣x⊥i ∣∣1−p (|xi| − ∣∣x⊥i ∣∣) = pλ.

However, these properties are not sufficient for full characterization of a projection. One

may ask that if the PGD method performs the best at p = 0 then why is it important at all

to design a projection algorithm for p > 0? We believe that developing an efficient algo-
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rithm for projection onto `p-balls with p ∈ (0, 1) is an interesting problem that can provide

a building block for other methods of sparse signal estimation involving the `p-norm. Fur-

thermore, studying this problem may help to find an insight on how the complexity of

these algorithms vary in terms of p.

In future work, we would like to examine the performance of more sophisticated first-

order methods such as the Nesterov’s optimal gradient methods (Nesterov, 2004) for `p-

constrained least squares problems. Finding a computationally efficient way to solve the

non-convex projection could also help to further understand non-convex CS algorithms

and their performance. Furthermore, it could be possible to extend the provided frame-

work further to analyze `p-constrained minimization with objective functions other than

the squared error. This generalized framework can be used in problems such as regression

with GLMs that arise in statistics and machine learning.
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Conclusion and Future Work

In this thesis, we studied sparsity-constrained optimization problems and proposed a

number of greedy algorithms as approximate solvers for these problems. Unlike the ex-

isting convex programming methods, the proposed greedy methods do not require the ob-

jective to be convex everywhere and produce a solution that is exactly sparse. We showed

that if the objective function has well-behaved second order variations, namely if it obeys

the SRH or the SRL conditions, then our proposed algorithms provide accurate solutions.

Some of these algorithms are also examined through simulations for the 1-bit CS prob-

lem and sparse logistic regression. In our work the minimization of functions subject to

structured sparsity is also addressed. Assuming the objective function obeys a variant of

the SRH condition tailored for model-based sparsity, we showed that a non-convex PGD

method can produce and accurate estimate of the underlying parameter.

In high-dimensional estimation problems one of the important challenges is the com-

putational complexity of the algorithms. One solution to this problem is to introduce

randomization in the algorithm in order to reduce the cost of evaluating the function or

its derivatives. It is also possible to reformulate the algorithm in stochastic optimization
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framework to not only simplify the iterations, but also address scenarios with stream-

ing data. In future work, it would be interesting to study these aspects in our proposed

algorithms. Furthermore, it would be interesting to prove accuracy guarantees of the algo-

rithms based on sufficient conditions that are less stringent that SRH or SRL. For example,

it may be possible to measure accuracy in metrics other than the `2-error and thus one

might require conditions similar to SRH or SRL, but with bounds defined using another

appropriately chosen metric.

We also studied the problem of `p-constrained least squares under the RIP assumption.

In particular, we showed that if one can perform projection onto a given `p-ball efficiently,

then PGD method provides an accurate solution to the non-convex `p-constrained least

squares. Our results suggest that the corresponding algorithm at p = 0 outperforms the

algorithm for any other choice of p ∈ (0, 1]. Nevertheless, study of this algorithm reveals an

interesting problem: while there are computationally tractable algorithms for projection

onto “`0-ball” and `1-ball, computational complexity of projection onto an `p-ball is still

unknown. We derived the necessary conditions for a point to be the projection of any given

point on an `p-ball. Furthermore, based on limited numerical observations we conjecture

that the desired projection is indeed tractable. Proving this open problem is an interesting

topic for future work as it can help to better understand the computational complexity of

the other non-convex CS algorithms that involve the `p-norms.
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Appendix A

Proofs of Chapter 3

A.1 Iteration Analysis For Smooth Cost Functions

To analyze our algorithm we first establish a series of results on how the algorithm operates

on its current estimate, leading to an iteration invariant property on the estimation error.

Propositions A.1 and A.2 are used to prove Lemmas A.1 and A.2. These Lemmas then are

used to prove Lemma A.3 that provides an iteration invariant which in turn yields the

main result.

Proposition A.1. Let M (t) be a matrix-valued function such that for all t ∈ [0, 1], M (t) is

symmetric and its eigenvalues lie in interval [B (t) , A (t)] with B (t) > 0. Then for any vector v

we have  1ˆ

0

B(t)dt

 ‖v‖2 ≤
∥∥∥∥∥∥
 1ˆ

0

M(t)dt

 v

∥∥∥∥∥∥
2

≤

 1ˆ

0

A(t)dt

 ‖v‖2.
Proof. Let λmin (·) and λmax (·) denote the smallest and largest eigenvalue functions defined

over the set of symmetric positive-definite matrices, respectively. These functions are in
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order concave and convex. Therefore, Jensen’s inequality yields

λmin

 1ˆ

0

M(t)dt

 ≥ 1ˆ

0

λmin (M(t)) dt ≥
1ˆ

0

B(t)dt

and

λmax

 1ˆ

0

M(t)dt

 ≤ 1ˆ

0

λmax (M(t)) dt ≤
1ˆ

0

A(t)dt,

which imply the desired result.

Proposition A.2. Let M (t) be a matrix-valued function such that for all t ∈ [0, 1] M (t) is

symmetric and its eigenvalues lie in interval [B (t) , A (t)] with B (t) > 0. If Γ is a subset of

row/column indices of M (·) then for any vector v we have∥∥∥∥∥∥
 1ˆ

0

PT
ΓM(t)PΓcdt

 v

∥∥∥∥∥∥
2

≤
1ˆ

0

A(t)−B (t)

2
dt ‖v‖2.

Proof. Since M (t) is symmetric, it is also diagonalizable. Thus, for any vector v we may

write

B (t) ‖v‖22 ≤ vTM (t) v ≤ A (t) ‖v‖22,

and thereby

−A (t)−B (t)

2
≤

vT
(
M (t)−A(t)+B(t)

2 I
)

v

‖v‖2
≤ A (t)−B (t)

2
.

Since M (t) − A(t)+B(t)
2 I is also diagonalizable, it follows from the above inequality that∥∥∥M (t)− A(t)+B(t)

2 I
∥∥∥ ≤ A(t)−B(t)

2 . Let M̃ (t) = PT
ΓM (t) PΓc . Since M̃ (t) is a submatrix of

M (t)− A(t)+B(t)
2 I we should have∥∥∥M̃ (t)

∥∥∥ ≤ ∥∥∥∥M (t)− A (t) +B (t)

2
I

∥∥∥∥ ≤ A (t)−B (t)

2
. (A.1)
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Finally, it follows from the convexity of the operator norm, Jensen’s inequality, and (A.1)

that ∥∥∥∥∥∥
1ˆ

0

M̃ (t) dt

∥∥∥∥∥∥ ≤
1ˆ

0

∥∥∥M̃ (t)
∥∥∥dt ≤

1ˆ

0

A(t)−B (t)

2
dt,

as desired.

To simplify notation we introduce functions

αk (p,q) =

1ˆ

0

Ak (tq + (1− t) p) dt

βk (p,q) =

1ˆ

0

Bk (tq + (1− t) p) dt

γk (p,q) = αk (p,q)− βk (p,q) ,

where Ak (·) and Bk (·) are defined by (3.2) and (3.3), respectively.

Lemma A.1. Let R denote the set supp (x̂− x?). The current estimate x̂ then satisfies

‖(x̂−x?) |Zc‖2 ≤
γ4s (x̂,x?)+γ2s (x̂,x?)

2β2s (x̂,x?)
‖x̂−x?‖2+

∥∥∇f (x?) |R\Z
∥∥

2
+
∥∥∇f (x?) |Z\R

∥∥
2

β2s (x̂,x?)
.

Proof. Since Z = supp (z2s) and |R| ≤ 2s we have ‖z|R‖2 ≤ ‖z|Z‖2 and thereby

∥∥z|R\Z∥∥2
≤
∥∥z|Z\R∥∥2

. (A.2)

Furthermore, because z = ∇f (x̂) we can write

∥∥z|R\Z∥∥2
≥
∥∥∇f (x̂)|R\Z−∇f (x?)|R\Z

∥∥
2
−
∥∥∇f (x?)|R\Z

∥∥
2

=

∥∥∥∥∥∥
 1ˆ

0

PT
R\Z∇

2f (tx̂ + (1− t) x?) dt

 (x̂− x?)

∥∥∥∥∥∥
2

−
∥∥∇f (x?) |R\Z

∥∥
2
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≥

∥∥∥∥∥∥
 1ˆ

0

PT
R\Z∇

2f (tx̂ + (1− t) x?) PR\Zdt

 (x̂− x?) |R\Z

∥∥∥∥∥∥
2

−
∥∥∇f (x?) |R\Z

∥∥
2

−

∥∥∥∥∥∥
 1ˆ

0

PT
R\Z∇

2f (tx̂ + (1− t) x?) PZ∩Rdt

 (x̂− x?) |Z∩R

∥∥∥∥∥∥
2

,

where we split the active coordinates (i.e.,R) into the setsR\Z and Z ∩R to apply the tri-

angle inequality and obtain the last expression. Applying Propositions A.1 and A.2 yields

∥∥z|R\Z∥∥2
≥β2s (x̂,x?)

∥∥(x̂−x?) |R\Z
∥∥

2
− γ2s (x̂,x?)

2
‖(x̂−x?) |Z∩R‖2−

∥∥∇f (x?) |R\Z
∥∥

2

≥β2s (x̂,x?)
∥∥(x̂−x?) |R\Z

∥∥
2
− γ2s (x̂,x?)

2
‖x̂−x?‖2−

∥∥∇f (x?) |R\Z
∥∥

2
. (A.3)

Similarly, we have

∥∥z|Z\R∥∥2
≤
∥∥∇f (x̂) |Z\R −∇f (x?) |Z\R

∥∥
2

+
∥∥∇f (x?) |Z\R

∥∥
2

=

∥∥∥∥∥∥
 1ˆ

0

PT
Z\R∇

2f (tx̂ + (1− t) x?) PRdt

 (x̂− x?) |R

∥∥∥∥∥∥
2

+
∥∥∇f (x?) |Z\R

∥∥
2

≤γ4s (x̂,x?)

2
‖(x̂− x?) |R‖2 +

∥∥∇f (x?) |Z\R
∥∥

2

=
γ4s (x̂,x?)

2
‖x̂− x?‖2 +

∥∥∇f (x?) |Z\R
∥∥

2
. (A.4)

Combining (A.2), (A.3), and (A.4) we obtain

γ4s(x̂,x
?)

2
‖x̂−x?‖2+

∥∥∇f(x?) |Z\R
∥∥

2
≥
∥∥z|Z\R∥∥2

≥
∥∥z|R\Z∥∥2

≥β2s(x̂,x
?)
∥∥(x̂−x?) |R\Z

∥∥
2
− γ2s(x̂,x

?)

2
‖x̂−x?‖2

−
∥∥∇f(x?) |R\Z

∥∥
2
.
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Since R = supp (x̂−x?), we have
∥∥(x̂−x?) |R\Z

∥∥
2

= ‖(x̂−x?) |Zc‖2. Hence,

‖(x̂−x?) |Zc‖2 ≤
γ4s (x̂,x?)+γ2s (x̂,x?)

2β2s (x̂,x?)
‖x̂−x?‖2+

∥∥∇f (x?) |R\Z
∥∥

2
+
∥∥∇f (x?) |Z\R

∥∥
β2s (x̂,x?)

,

which proves the claim.

Lemma A.2. The vector b given by

b = arg min f (x) s.t. x|T c = 0 (A.5)

satisfies

‖x?|T −b‖2 ≤
‖∇f (x?) |T ‖2
β4s (b,x?)

+
γ4s (b,x?)

2β4s (b,x?)
‖x?|T c‖2.

Proof. We have

∇f (x?)−∇f (b) =

1ˆ

0

∇2f (tx?+(1−t) b) dt (x?−b) .

Furthermore, since b is the solution to (A.5) we must have ∇f (b) |T = 0. Therefore,

∇f (x?) |T =

 1ˆ

0

PT
T∇2f (tx? + (1− t) b) dt

 (x? − b)

=

 1ˆ

0

PT
T∇2f (tx?+(1−t) b) PT dt

 (x? − b) |T

+

 1ˆ

0

PT
T∇2f(tx?+(1−t) b) PT cdt

 (x?−b) |T c . (A.6)

Since f has µ4s-SRH and |T ∪ supp (tx? + (1− t) b)| ≤ 4s for all t ∈ [0, 1], functions A4s (·)

and B4s (·), defined using (3.2) and (3.3), exist such that we have

B4s (tx? + (1− t) b) ≤ λmin
(
PT
T∇2f (tx?+(1−t) b) PT

)
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and

A4s (tx? + (1− t) b) ≥ λmax
(
PT
T∇2f (tx?+(1−t) b) PT

)
.

Thus, from Proposition A.1 we obtain

β4s (b,x?) ≤ λmin

 1ˆ

0

PT
T∇2f (tx? + (1− t) b) PT dt


and

α4s (b,x?) ≥ λmax

 1ˆ

0

PT
T∇2f (tx? + (1− t) b) PT dt

 .

This result implies that the matrix
´ 1

0 PT
T∇2f (tx? + (1− t) b) PT dt, henceforth denoted

by W, is invertible and

1

α4s (b,x?)
≤ λmin

(
W−1

)
≤ λmax

(
W−1

)
≤ 1

β4s (b,x?)
, (A.7)

where we used the fact that λmax (M)λmin

(
M−1

)
= 1 for any positive-definite matrix M,

particularly for W and W−1. Therefore, by multiplying both sides of (A.6) by W−1 obtain

W−1∇f (x?) |T = (x? − b) |T + W−1

 1ˆ

0

PT
T∇2f(tx?+(1−t) b) PT cdt

 x?|T c ,

where we also used the fact that (x? − b) |T c = x?|T c . With S? = supp (x?), using triangle

inequality, (A.7), and Proposition A.2 then we obtain

‖x?|T −b‖2 = ‖(x?−b)|T ‖2

≤

∥∥∥∥∥∥W−1

 1ˆ

0

PT
T∇2f(tx?+(1−t) b) PT c∩S?dt

 x?|T c∩S?

∥∥∥∥∥∥
2

+
∥∥W−1∇f(x?) |T

∥∥
2
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≤
‖∇f (x?) |T ‖2
β4s (b,x?)

+
γ4s (b,x?)

2β4s (b,x?)
‖x?|T c‖2,

as desired.

Lemma A.3 (Iteration Invariant). The estimation error in the current iteration, ‖x̂− x?‖2,

and that in the next iteration, ‖bs − x?‖2, are related by the inequality:

‖bs − x?‖2 ≤
γ4s (x̂,x?) + γ2s (x̂,x?)

2β2s (x̂,x?)

(
1 +

γ4s (b,x?)

β4s (b,x?)

)
‖x̂− x?‖2

+

(
1 +

γ4s (b,x?)

β4s (b,x?)

) ∥∥∇f (x?) |R\Z
∥∥

2
+
∥∥∇f (x?) |Z\R

∥∥
2

β2s (x̂,x?)
+

2‖∇f (x?) |T ‖2
β4s (b,x?)

.

Proof. Because Z ⊆ T we must have T c ⊆ Zc. Therefore, we can write ‖x?|T c‖2 =

‖(x̂− x?) |T c‖2 ≤ ‖(x̂− x?) |Zc‖2. Then using Lemma A.1 we obtain

‖x?|T c‖2 ≤
γ4s(x̂,x

?)+γ2s(x̂,x
?)

2β2s(x̂,x?)
‖x̂−x?‖2+

∥∥∇f(x?) |R\Z
∥∥

2
+
∥∥∇f(x?) |Z\R

∥∥
2

β2s(x̂,x?)
. (A.8)

Furthermore,

‖bs − x?‖2 ≤ ‖bs − x?|T ‖2 + ‖x?|T c‖2

≤ ‖x?|T − b‖2 + ‖bs − b‖2 + ‖x?|T c‖2≤ 2‖x?|T − b‖2 + ‖x?|T c‖2, (A.9)

where the last inequality holds because ‖x?|T ‖0 ≤ s and bs is the best s-term approxima-

tion of b. Therefore, using Lemma A.2,

‖bs − x?‖2 ≤
2

β4s (b,x?)
‖∇f (x?) |T ‖2 +

(
1 +

γ4s (b,x?)

β4s (b,x?)

)
‖x?|T c‖2. (A.10)

Combining (A.8) and (A.10) we obtain

‖bs−x?‖2 ≤
γ4s (x̂,x?) + γ2s (x̂,x?)

2β2s (x̂,x?)

(
1 +

γ4s (b,x?)

β4s (b,x?)

)
‖x̂− x?‖2

+

(
1 +

γ4s (b,x?)

β4s (b,x?)

) ∥∥∇f (x?) |R\Z
∥∥

2
+
∥∥∇f (x?) |Z\R

∥∥
2

β2s (x̂,x?)
+

2‖∇f (x?) |T ‖2
β4s (b,x?)

,
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as the lemma stated.

Using the results above, we can now prove Theorem 3.1.

Proof of Theorem 3.1. Using definition 3.1 it is easy to verify that for k ≤ k′ and any

vector u we have Ak (u) ≤ Ak′ (u) and Bk (u) ≥ Bk′ (u). Consequently, for k ≤ k′ and any

pair of vectors p and q we have αk (p,q) ≤ αk′ (p,q), βk (p,q) ≥ βk′ (p,q), and µk ≤ µk′ .

Furthermore, for any function that satisfies µk−SRH we can write

αk (p,q)

βk (p,q)
=

´ 1
0 Ak (tq + (1− t) p) dt´ 1
0 Bk (tq + (1− t) p) dt

≤
´ 1

0 µkBk (tq + (1− t) p) dt´ 1
0 Bk (tq + (1− t) p) dt

= µk,

and thereby γk(p,q)
βk(p,q) ≤ µk − 1. Therefore, applying Lemma A.3 to the estimate in the i-th

iterate of the algorithm shows that∥∥∥x̂(i)−x?
∥∥∥

2
≤ (µ4s − 1)µ4s

∥∥∥x̂(i−1) − x?
∥∥∥

2
+

2‖∇f (x?) |T ‖2
β4s (b,x?)

+µ4s

∥∥∇f (x?) |R\Z
∥∥

2
+
∥∥∇f (x?) |Z\R

∥∥
2

β2s

(
x̂(i−1),x?

)
≤
(
µ2

4s − µ4s

) ∥∥∥x̂(i−1) − x?
∥∥∥

2
+ 2ε+ 2µ4sε.

Applying the assumption µ4s ≤ 1+
√

3
2 then yields∥∥∥x̂(i)−x?

∥∥∥
2
≤ 1

2

∥∥∥x̂(i−1)−x?
∥∥∥

2
+
(

3 +
√

3
)
ε.

The theorem follows using this inequality recursively.

A.2 Iteration Analysis For Non-Smooth Cost Functions

In this part we provide analysis of GraSP for non-smooth functions. Definition 3.3 basi-

cally states that for any k-sparse vector x ∈ Rn, αk (x) and βk (x) are in order the smallest
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and largest values for which

βk (x) ‖∆‖2
2 ≤ Bf (x + ∆ ‖ x) ≤ αk (x) ‖∆‖2

2 (A.11)

holds for all vectors ∆ ∈ Rn that satisfy |supp (x) ∪ supp (∆)| ≤ k. By interchanging x and

x + ∆ in (A.11) and using the fact that

Bf (x + ∆ ‖ x)+Bf (x ‖ x + ∆) = 〈∇f (x + ∆)−∇f (x) ,∆〉

one can easily deduce

[βk(x+∆)+βk(x)]‖∆‖22≤〈∇f (x+∆)−∇f (x) ,∆〉≤ [αk(x+∆)+αk(x)]‖∆‖22. (A.12)

Propositions A.3, A.4, and A.5 establish some basic inequalities regarding the restricted

Bregman divergence under SRL assumption. Using these inequalities we prove Lemmas

A.4 and A.5. These two Lemmas are then used to prove an iteration invariant result in

Lemma A.6 which in turn is used to prove Theorem 3.2.

Note In Propositions A.3, A.4, and A.5 we assume x1 and x2 are two vectors in Rn such

that |supp (x1) ∪ supp (x2)| ≤ r. Furthermore, we use the shorthand ∆ = x1 − x2 and

denote supp (∆) by R. We also denote ∇f (x1) − ∇f (x2) by ∆′. To simplify the nota-

tion further the shorthands αl, βl, and γl are used for αl (x1,x2) := αl (x1) + αl (x2),

βl (x1,x2) := βl (x1) + βl (x2), and γl (x1,x2) := αl (x1,x2)− βl (x1,x2), respectively.

Proposition A.3. Let R′ be a subset of R. Then the following inequalities hold.∣∣∣αr‖∆|R′‖22 − 〈∆′, ∆|R′〉∣∣∣ ≤ γr‖∆|R′‖2‖∆‖2 (A.13)∣∣∣βr‖∆|R′‖22 − 〈∆′, ∆|R′〉∣∣∣ ≤ γr‖∆|R′‖2‖∆‖2
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Proof. Using (A.11) we can write

βr (x1) ‖∆|R′‖
2
2t

2 ≤ Bf (x1 − t ∆|R′ ‖ x1) ≤ αr (x1) ‖∆|R′‖
2
2t

2 (A.14)

βr (x2) ‖∆|R′‖
2
2t

2 ≤ Bf (x2 − t ∆|R′ ‖ x2) ≤ αr (x2) ‖∆|R′‖
2
2t

2 (A.15)

and

βr (x1) ‖∆− t ∆|R′‖
2
2 ≤ Bf (x2 + t ∆|R′ ‖ x1) ≤ αr (x1) ‖∆− t ∆|R′‖

2
2 (A.16)

βr (x2) ‖∆− t ∆|R′‖
2
2 ≤ Bf (x1 − t ∆|R′ ‖ x2) ≤ αr (x2) ‖∆− t ∆|R′‖

2
2, (A.17)

where t is an arbitrary real number. Using the definition of the Bregman divergence we

can add (A.14) and (A.15) to obtain

βr‖∆|R′‖
2
2t

2 ≤ f (x1 − t ∆|R′)− f (x1) + f (x2 + t ∆|R′)− f (x2) +
〈
∆′, ∆|R′

〉
t

≤ αr‖∆|R′‖
2
2t

2. (A.18)

Similarly, (A.16) and (A.17) yield

βr‖∆−t∆|R′‖
2
2 ≤f (x1−t∆|R′)−f (x1)+f (x2 +t∆|R′)−f (x2)+

〈
∆′,∆−t∆|R′

〉
≤ αr‖∆− t ∆|R′‖

2
2. (A.19)

Expanding the quadratic bounds of (A.19) and using (A.18) then we obtain

0 ≤ γr‖∆|R′‖
2
2t

2 + 2
(
βr‖∆|R′‖

2
2 − 〈∆, ∆|R′〉

)
t− βr‖∆‖

2
2 +

〈
∆′,∆

〉
(A.20)

0 ≤ γr‖∆|R′‖
2
2t

2 − 2
(
αr‖∆|R′‖

2
2 − 〈∆, ∆|R′〉

)
t+ αr‖∆‖22 −

〈
∆′,∆

〉
. (A.21)

It follows from (A.12), (A.20), and (A.21) that

0 ≤ γr‖∆|R′‖
2
2t

2 + 2
(
βr‖∆|R′‖

2
2 − 〈∆, ∆|R′〉

)
t+ γr‖∆‖

2
2

0 ≤ γr‖∆|R′‖
2
2t

2 − 2
(
αr‖∆|R′‖

2
2 − 〈∆, ∆|R′〉

)
t+ γr‖∆‖

2
2.
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These two quadratic inequalities hold for any t ∈ R thus their discriminants are not posi-

tive, i.e.,

(
βr‖∆|R′‖

2
2 −

〈
∆′, ∆|R′

〉)2
− γ2

r‖∆|R′‖
2
2‖∆‖

2
2 ≤ 0(

αr‖∆|R′‖
2
2 −

〈
∆′, ∆|R′

〉)2
− γ2

r‖∆|R′‖
2
2‖∆‖

2
2 ≤ 0,

which immediately yields the desired result.

Proposition A.4. The following inequalities hold for R′ ⊆ R.∣∣∣∥∥∆′
∣∣
R′
∥∥2

2
− αr

〈
∆′, ∆|R′

〉∣∣∣ ≤ γr‖∆|R′‖2‖∆‖2 (A.22)∣∣∣∥∥∆′
∣∣
R′
∥∥2

2
− βr

〈
∆′, ∆|R′

〉∣∣∣ ≤ γr‖∆|R′‖2‖∆‖2
Proof. From (A.11) we have

βr (x1)
∥∥∆′

∣∣
R′
∥∥2

2
t2 ≤ Bf

(
x1 − t ∆′

∣∣
R′ ‖ x1

)
≤ αr (x1)

∥∥∆′
∣∣
R′
∥∥2

2
t2 (A.23)

βr (x2)
∥∥∆′

∣∣
R′
∥∥2

2
t2 ≤ Bf

(
x2 + t ∆′

∣∣
R′ ‖ x2

)
≤ αr (x2)

∥∥∆′
∣∣
R′
∥∥2

2
t2 (A.24)

and

βr (x1)
∥∥∆− t ∆′

∣∣
R′
∥∥2

2
≤ Bf

(
x2 + t ∆′

∣∣
R′ ‖ x1

)
≤ αr (x1)

∥∥∆− t ∆′
∣∣
R′
∥∥2

2
(A.25)

βr (x2)
∥∥∆− t ∆′

∣∣
R′
∥∥2

2
≤ Bf

(
x1 − t ∆′

∣∣
R′ ‖ x2

)
≤ αr (x2)

∥∥∆− t ∆′
∣∣
R′
∥∥2

2
, (A.26)

for any t ∈ R. By subtracting the sum of (A.25) and (A.26) from that of (A.23) and (A.24)

we obtain

βr
∥∥∆′

∣∣
R′
∥∥2

2
t2 − αr

∥∥∆− t ∆′
∣∣
R′
∥∥2

2
≤ 2

〈
∆′, ∆′

∣∣
R′
〉
t−

〈
∆′,∆

〉
≤ αr

∥∥∆′
∣∣
R′
∥∥2

2
t2 − βr

∥∥∆− t ∆′
∣∣
R′
∥∥2

2
. (A.27)
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Expanding the bounds of (A.27) then yields

0 ≤ γr
∥∥∆′

∣∣
R′
∥∥2

2
t2 + 2

(〈
∆′, ∆′

∣∣
R′
〉
− αr

〈
∆, ∆′

∣∣
R′
〉)
t+ αr‖∆‖22 −

〈
∆′,∆

〉
0 ≤ γr

∥∥∆′
∣∣
R′
∥∥2

2
t2 − 2

(〈
∆′, ∆′

∣∣
R′
〉
− βr

〈
∆, ∆′

∣∣
R′
〉)
t− βr‖∆‖

2
2 +

〈
∆′,∆

〉
.

Note that 〈∆′, ∆′|R′〉 = ‖∆′|R′‖
2
2 and 〈∆, ∆′|R′〉 = 〈∆|R′ ,∆

′〉. Therefore, using (A.12)

we obtain

0 ≤ γr
∥∥∆′

∣∣
R′
∥∥2

2
t2 + 2

(∥∥∆′
∣∣
R′
∥∥2

2
− αr

〈
∆′, ∆|R′

〉)
t+ γr‖∆‖

2
2 (A.28)

0 ≤ γr
∥∥∆′

∣∣
R′
∥∥2

2
t2 − 2

(∥∥∆′
∣∣
R′
∥∥2

2
− βr

〈
∆′, ∆|R′

〉)
t+ γr‖∆‖

2
2. (A.29)

Since the right-hand sides of (A.28) and (A.29) are quadratics in t and always non-negative

for all values of t ∈ R, their discriminants cannot be positive. Thus we have

(∥∥∆′
∣∣
R′
∥∥2

2
− αr

〈
∆′, ∆|R′

〉)2
− γ2

r

∥∥∆′
∣∣
R′
∥∥2

2
‖∆‖2 ≤ 0(∥∥∆′

∣∣
R′
∥∥2

2
− βr

〈
∆′, ∆|R′

〉)2
− γ2

r

∥∥∆′
∣∣
R′
∥∥2

2
‖∆‖2 ≤ 0,

which yield the desired result.

Corollary A.1. The inequality

∥∥∆′
∣∣
R′
∥∥

2
≥ βr‖∆|R′‖2 − γr

∥∥∥∆|R\R′
∥∥∥

2
,

holds for R′ ⊆ R.

Proof. It follows from (A.22) and (A.13) that

−
∥∥∆′∣∣R′∥∥2

2
+α2

r‖∆|R′‖
2
2 =−

∥∥∆′∣∣R′∥∥2

2
+αr

〈
∆′,∆|R′

〉
+αr

[
αr‖∆|R′‖

2
2−
〈
∆′,∆|R′

〉]
≤ γr

∥∥∆′
∣∣
R′
∥∥

2
‖∆‖2 + αrγr‖∆|R′‖2‖∆‖2.
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Therefore, after straightforward calculations we get

∥∥∆′
∣∣
R′
∥∥

2
≥ 1

2

(
−γr‖∆‖2 +

∣∣2αr‖∆|R′‖2 − γr‖∆‖2∣∣)
≥ αr‖∆|R′‖2 − γr‖∆‖2

≥ βr‖∆|R′‖2 − γr
∥∥∥∆|R\R′

∥∥∥
2
,

which proves the corollary.

Proposition A.5. Suppose that K is a subset of Rc with at most k elements. Then we have

∥∥∆′
∣∣
K
∥∥

2
≤ γk+r‖∆‖2.

Proof. Using (A.11) for any t ∈ R we can write

βk+r (x1)
∥∥∆′

∣∣
K
∥∥2

2
t2 ≤ Bf

(
x1 + t ∆′

∣∣
K ‖ x1

)
≤ αk+r (x1)

∥∥∆′
∣∣
K
∥∥2

2
t2 (A.30)

βk+r (x2)
∥∥∆′

∣∣
K
∥∥2

2
t2 ≤ Bf

(
x2 − t ∆′

∣∣
K ‖ x2

)
≤ αk+r (x2)

∥∥∆′
∣∣
K
∥∥2

2
t2 (A.31)

and similarly

βk+r (x1)
∥∥∆+t∆′

∣∣
K
∥∥2

2
≤ Bf

(
x2−t ∆′

∣∣
K ‖ x1

)
≤ αk+r (x1)

∥∥∆+t∆′
∣∣
K
∥∥2

2
(A.32)

βk+r (x2)
∥∥∆+t∆′

∣∣
K
∥∥2

2
≤ Bf

(
x1+t∆′

∣∣
K ‖ x2

)
≤ αk+r (x2)

∥∥∆+t∆′
∣∣
K
∥∥2

2
. (A.33)

By subtracting the sum of (A.32) and (A.33) from that of (A.30) and (A.31) we obtain

βk+r

∥∥∆′
∣∣
K
∥∥2

2
t2 − αk+r

∥∥∆+t ∆′
∣∣
K
∥∥2

2
≤ −2t

〈
∆′, ∆′

∣∣
K
〉
−
〈
∆′,∆

〉
≤ αk+r

∥∥∆′
∣∣
K
∥∥2

2
t2 − βk+r

∥∥∆+t ∆′
∣∣
K
∥∥2

2
. (A.34)

Note that 〈∆′, ∆′|K〉 = ‖∆′|K‖
2
2 and 〈∆, ∆′|K〉 = 0. Therefore, (A.12) and (A.34) imply

0 ≤ γk+r

∥∥∆′
∣∣
K
∥∥2

2
t2 ± 2

∥∥∆′
∣∣
K
∥∥2

2
t+ γk+r‖∆‖

2
2 (A.35)
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hold for all t ∈ R. Hence, as quadratic functions of t, the right-hand side of (A.35) cannot

have a positive discriminant. Thus we must have

∥∥∆′
∣∣
K
∥∥4

2
− γ2

k+r‖∆‖
2
2

∥∥∆′
∣∣
K
∥∥2

2
≤ 0,

which yields the desired result.

Lemma A.4. Let R denote supp (x̂− x?). Then we have

‖(x̂−x?)|Zc‖2 ≤
γ2s (x̂,x?)+γ4s (x̂,x?)

β2s (x̂,x?)
‖x̂−x?‖2+

∥∥∥∇f (x?)|R\Z
∥∥∥

2
+
∥∥∥∇f (x?)|Z\R

∥∥∥
2

β2s (x̂,x?)
.

Proof. Given that Z = supp (z2s) and |R| ≤ 2s we have ‖z|R‖2 ≤ ‖z|Z‖2. Hence∥∥∥z|R\Z
∥∥∥

2
≤
∥∥∥z|Z\R

∥∥∥
2
. (A.36)

Furthermore, using Corollary A.1 we can write∥∥∥z|R\Z
∥∥∥

2
=
∥∥∥∇f (x̂)|R\Z

∥∥∥
2

≥
∥∥∥(∇f (x̂)−∇f (x?))|R\Z

∥∥∥
2
−
∥∥∥∇f (x?)|R\Z

∥∥∥
2

≥β2s (x̂,x?)
∥∥∥(x̂−x?)|R\Z

∥∥∥
2
− γ2s (x̂,x?) ‖(x̂−x?)|R∩Z‖2−

∥∥∥∇f (x?)|R\Z
∥∥∥

2

≥β2s (x̂,x?)
∥∥∥(x̂−x?)|R\Z

∥∥∥
2
− γ2s (x̂,x?) ‖x̂−x?‖2−

∥∥∥∇f (x?)|R\Z
∥∥∥

2
. (A.37)

Similarly, using Proposition A.5 we have∥∥∥z|Z\R
∥∥∥

2
=
∥∥∥∇f (x̂)|Z\R

∥∥∥
2
≤
∥∥∥(∇f (x̂)−∇f (x?))|Z\R

∥∥∥
2

+
∥∥∥∇f (x?)|Z\R

∥∥∥
2

≤ γ4s (x̂,x?) ‖x̂− x?‖2 +
∥∥∥∇f (x?)|Z\R

∥∥∥
2
. (A.38)
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Combining (A.36), (A.37), and (A.38) then yields

γ4s (x̂,x?) ‖x̂−x?‖2 +
∥∥∥∇f (x?)|Z\R

∥∥∥
2
≥ −γ2s (x̂,x?) ‖(x̂−x?)|R∩Z‖2

+β2s (x̂,x?)
∥∥∥(x̂−x?)|R\Z

∥∥∥
2
−
∥∥∥∇f (x?)|R\Z

∥∥∥
2
.

Note that (x̂− x?)|R\Z = (x̂− x?)|Zc . Therefore, we have

‖(x̂−x?)|Zc‖2 ≤
γ2s (x̂,x?)+γ4s (x̂,x?)

β2s (x̂,x?)
‖x̂−x?‖2+

∥∥∥∇f (x?)|R\Z
∥∥∥

2
+
∥∥∥∇f (x?)|Z\R

∥∥∥
2

β2s (x̂,x?)
,

as desired.

Lemma A.5. The vector b given by

b = arg min
x

f (x) s.t. x|T c = 0 (A.39)

satisfies ‖x?|T − b‖2 ≤
‖∇f (x?)|T ‖2
β4s(x?,b)

+
(

1 + γ4s(x?,b)

β4s(x?,b)

)
‖x?|T c‖2.

Proof. Since b satisfies (A.39) we must have ∇f (b)|T = 0. Then it follows from Corollary

A.1 that

‖x?|T − b‖2 = ‖(x? − b)|T ‖2

≤
∥∥∇f (x?)|T

∥∥
2

β4s (x?,b)
+
γ4s (x?,b)

β4s (x?,b)
‖x?|T c‖2,

which proves the lemma.

Lemma A.6. The estimation error of the current iterate (i.e., ‖x̂− x?‖2) and that of the next

iterate (i.e., ‖bs − x?‖2) are related by the inequality:

‖bs−x?‖2 ≤
(

1+
2γ4s (x?,b)

β4s (x?,b)

)
γ2s (x̂,x?)+γ4s (x̂,x?)

β2s (x̂i,x?)
‖x̂−x?‖2+

2
∥∥∇f (x?)|T

∥∥
2

β4s (x?,b)

+

(
1+

2γ4s (x?,b)

β4s (x?,b)

) ∥∥∥∇f (x?)|R\Z
∥∥∥

2
+
∥∥∥∇f (x?)|Z\R

∥∥∥
2

β2s (x̂,x?)
.
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Proof. Since T c ⊆ Zc we have ‖x?|T c‖2 = ‖(x̂− x?)|T c‖2 ≤ ‖(x̂− x?)|Zc‖2. Therefore,

applying Lemma A.4 yields

‖x?|T c‖2 ≤
γ2s(x̂,x

?)+γ4s(x̂,x
?)

β2s(x̂,x
?)

‖x̂−x?‖2+

∥∥∥∇f (x?)|R\Z
∥∥∥

2
+
∥∥∥∇f (x?)|Z\R

∥∥∥
2

β2s(x̂,x
?)

. (A.40)

Furthermore, as showed by (A.9) during the proof of Lemma A.3, we again have

‖bs − x?‖2 ≤ 2‖x?|T − b‖2 + ‖x?|T c‖2.

Hence, it follows from Lemma A.5 that

‖bs − x?‖2 ≤
2
∥∥∇f (x?)|T

∥∥
2

β4s (x?,b)
+

(
1 +

2γ4s (x?,b)

β4s (x?,b)

)
‖x?|T c‖2. (A.41)

Combining (A.40) and (A.41) yields

‖bs − x?‖2 ≤
(

1+
2γ4s (x?,b)

β4s (x?,b)

)
γ2s (x̂,x?)+γ4s (x̂,x?)

β2s (x̂,x?)
‖x̂− x?‖2+

2
∥∥∇f (x?)|T

∥∥
2

β4s (x?,b)

+

(
1+

2γ4s (x?,b)

β4s (x?,b)

) ∥∥∥∇f (x?)|R\Z
∥∥∥

2
+
∥∥∥∇f (x?)|Z\R

∥∥∥
2

β2s (x̂,x?)
,

as desired.

Proof of Theorem 3.2. Let the vectors involved in the j-th iteration of the algorithm be

denoted by superscript (j). Given that µ4s ≤ 3+
√

3
4 we have

γ4s

(
x̂(j),x?

)
β4s

(
x̂(j),x?

) ≤ √3− 1

4
and 1 +

2γ4s

(
x?,b(j)

)
β4s

(
x?,b(j)

) ≤ 1 +
√

3

2
,
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that yield,(
1 +

2γ4s (x?,b)

β4s (x?,b)

)
γ2s

(
x̂(j),x?

)
+ γ4s

(
x̂(j),x?

)
β2s

(
x̂(j),x?

) ≤ 1 +
√

3

2
×

2γ4s

(
x̂(j),x?

)
β4s

(
x̂(j),x?

)
≤ 1 +

√
3

2
×
√

3− 1

2

=
1

2
.

Therefore, it follows from Lemma A.6 that∥∥∥x̂(j+1) − x?
∥∥∥

2
≤ 1

2

∥∥∥x̂(j) − x?
∥∥∥

2
+
(

3 +
√

3
)
ε.

Applying this inequality recursively for j = 0, 1, · · · , i− 1 then yields

‖x̂− x?‖2 ≤ 2−i‖x?‖2 +
(

6 + 2
√

3
)
ε

which is the desired result.
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Proofs of Chapter 4

To prove Theorem 4.1 we use the following two lemmas. We omit the proofs since they can

be easily adapted from Appendix A Lemmas A.1 and A.2 using straightforward changes.

It suffices to notice that

1. the proof in Appendix A still holds if the estimation errors are measured with respect

to the true sparse minimizer or any other feasible (i.e., s-sparse) point, rather than

the statistical true parameter, and

2. the iterates and the crude estimates will always remain in the sphere of radius r

centered at the origin where the SRH applies.

In what follows
´ 1

0 αk (τx + (1−τ) x) dτ and
´ 1

0 βk (τx + (1−τ) x) dτ are denoted by α̃k (x)

and β̃k (x), respectively. We also define γ̃k (x) := α̃k (x)− β̃k (x).

Lemma B.1. LetZ be the index set defined in Algorithm 2 andR denote the set supp
(
x(t) − x

)
.
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Then the iterate x(t) obeys∥∥∥(x(t) − x
)∣∣∣
Zc

∥∥∥
2
≤
γ̃4s

(
x(t)
)

+ γ̃2s

(
x(t)
)

β̃2s

(
x(t)
) ∥∥∥x(t) − x

∥∥∥
2

+

∥∥∇R\Zf (x)
∥∥

2
+
∥∥∇Z\Rf (x)

∥∥
2

β̃2s

(
x(t)
) .

Lemma B.2. The vector b defined at line 3 of Algorithm 2 obeys

‖x|T − b‖2 ≤
‖∇T f (x)‖2
β̃4s (b)

+
γ̃4s (b)

2β̃4s (b)
‖x|T c‖2.

Proof of Theorem 4.1. Since Z ⊆ T we have T c ⊆ Zc
and thus∥∥∥(x(t) − x

)∣∣∣
Zc

∥∥∥
2
≥
∥∥∥(x(t) − x

)∣∣∣
T c

∥∥∥
2

= ‖x|T c‖2.

Then it follows from Lemma B.1 that

‖x|T c‖2 ≤
γ̃4s

(
x(t)
)

β̃4s

(
x(t)
)∥∥∥x(t) − x

∥∥∥
2

+

∥∥∇R\Zf (x)
∥∥

2
+
∥∥∇Z\Rf (x)

∥∥
2

β4s

≤ (µ4s − 1)
∥∥∥x(t) − x

∥∥∥
2

+ 2ε, (B.1)

where we used the fact that α4s ≥ α2s and β4s ≤ β2s to simplify the expressions. Further-

more, we have ∥∥∥x(t+1) − x
∥∥∥

2
= ‖bs − x‖2

≤ ‖bs − x|T ‖2 + ‖x|T c‖2

≤ ‖bs − b‖2 + ‖b− x|T ‖2 + ‖x|T c‖2

≤ 2‖b− x|T ‖2 + ‖x|T c‖2,
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where the last inequality holds because bs is the best s-term approximation of b. Hence, it

follows from Lemma B.2 that∥∥∥x(t+1) − x
∥∥∥

2
≤ 2
‖∇T f (x)‖2
β̃4s (b)

+
α̃4s (b)

β̃4s (b)
‖x|T c‖2

≤ 2ε+ µ4s‖x|T c‖2.

Then applying (B.1) and simplifying the resulting inequality yield∥∥∥x(t+1) − x
∥∥∥

2
≤ 2ε+ µ4s

(
(µ4s − 1)

∥∥∥x(t) − x
∥∥∥

2
+ 2ε

)
≤
(
µ2

4s − µ4s

) ∥∥∥x(t) − x
∥∥∥

2
+ 2 (µ4s + 1) ε,

which is the desired result.

Lemma B.3 (Bounded Sparse Projection). For any x ∈ Rn the vector max
{

1, r
‖xs‖2

}
xs is a

solution to the minimization

arg min
w
‖x−w‖2 s.t. ‖w‖2 ≤ r and ‖w‖0 ≤ s. (B.2)

Proof. Given an index set S ⊆ [n] we can write ‖x−w‖2
2 = ‖x−w|S‖2

2 + ‖x|Sc‖2
2 for

vectors w with supp (w) ⊆ S. Therefore, the solution to

arg min
w
‖x−w‖2 s.t. ‖w‖2 ≤ r and supp (w) ⊆ S

is simply obtained by projection of x|S onto the sphere of radius r, i.e.,

PS (x) = max

{
1,

r

‖x|S‖2

}
x|S .

Therefore, to find a solution to (B.2) it suffices to find the index set S with |S| = s and thus

the corresponding PS (x) that minimize ‖x− PS (x)‖2. Note that we have

‖x− PS (x)‖2
2 = ‖x|S − PS (x)‖2

2 + ‖x|Sc‖2
2
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=
(
‖x|S‖2 − r

)2
+

+ ‖x|Sc‖2
2

=


‖x‖2

2 − ‖x|S‖2
2 , ‖x|S‖2 < r

‖x‖2
2 + r2 − 2r‖x|S‖2 , ‖x|S‖2 ≥ r

.

For all valid S with ‖x|S‖2 < r we have ‖x‖2
2 − ‖x|S‖2

2 > ‖x‖2
2 − r2. Similarly, for all

valid S with ‖x|S‖2 < r we have ‖x‖2
2 + r2 − 2r‖x|S‖2 ≤ ‖x‖2

2 − r2. Furthermore, both

‖x‖2
2 − ‖x|S‖2

2 and ‖x‖2
2 + r2 − 2r‖x|S‖2 are decreasing functions of ‖x|S‖2. Therefore,

‖x− PS (x)‖2
2 is a decreasing function of ‖x|S‖2. Hence, ‖x− PS (x)‖2 attains its mini-

mum at S = supp (xs).

On non-convex formulation of Plan and Vershynin (2013)

Plan and Vershynin (2013) derived accuracy guarantees for

arg max
x
〈y,Ax〉 s.t. x ∈ K

as a solver for the 1-bit CS problem, where K is a subset of the unit Euclidean ball. While

their result (Plan and Vershynin, 2013, Theorem 1.1) applies to both convex and non-

convex sets K, the focus of their work has been on the set K that is the intersection of a

centered `1-ball and the unit Euclidean ball. Our goal, however, is to examine the other

interesting choice ofK, namely the intersection of canonical sparse subspaces and the unit

Euclidean ball. The estimator in this case can be written as

arg max
x
〈y,Ax〉 s.t. ‖x‖0 ≤ s and ‖x‖2 ≤ 1. (B.3)

We show that a solution to the optimization above can be obtained explicitly.

Lemma B.4. A solution to (B.3) is x̂ =
(
ATy

)
s
/
∥∥(ATy

)
s

∥∥
2
.
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Proof. For I ⊆ [n] define

x̂ (I) := arg max
x
〈y,Ax〉 s.t. x|Ic = 0 and ‖x‖2 ≤ 1.

Furthermore, choose

Î ∈ arg max
I
〈y,Ax̂ (I)〉 s.t. I ⊆ [n] and |I| ≤ s.

Then x̂
(
Î
)

would be a solution to (B.3). Using the fact that 〈y,Ax〉 =
〈
ATy,x

〉
, straight-

forward application of the Cauchy-Schwarz inequality shows that x̂ (I) =
(
ATy

)∣∣
I /
∥∥(ATy

)∣∣
I
∥∥

2

for which we have

〈y,Ax̂ (I)〉 =
∥∥(ATy

)∣∣
I
∥∥

2
.

Thus, we obtain Î = supp
((

ATy
)
s

)
and thereby x̂

(
Î
)

= x̂, which proves the claim.
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Lemma C.1. Suppose that f is a twice differentiable function that satisfies (5.4) for a given x

and all ∆ such that supp (∆) ∪ supp (x) ∈M (Ck). Then we have

∣∣〈u,v〉 − η 〈u,∇2f (x) v
〉∣∣ ≤ (ηαCk − βCk

2
+

∣∣∣∣ηαCk + βCk
2

− 1

∣∣∣∣) ‖u‖‖v‖,
for all η > 0 and u,v ∈ H such that supp (u± v) ∪ supp (x) ∈M (Ck).

Proof. We first the prove the lemma for unit-norm vectors u and v. Since supp (u± v) ∪

supp (x) ∈M (Ck) we can use (5.4) for ∆ = u± v to obtain

βCk‖u± v‖2 ≤
〈
u± v,∇2f (x) (u± v)

〉
≤ αCk‖u± v‖2.

These inequalities and the assumption ‖u‖ = ‖v‖ = 1 then yield

βCk − αCk
2

+
αCk + βCk

2
〈u,v〉 ≤

〈
u,∇2f (x) v

〉
≤ αCk − βCk

2
+
αCk + βCk

2
〈u,v〉 ,

where we used the fact that ∇2f (x) is symmetric since f is twice continuously differen-
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tiable. Multiplying all sides by η and rearranging the terms then imply

η
αCk − βCk

2
≥
∣∣∣∣(ηαCk + βCk

2
− 1

)
〈u,v〉+ 〈u,v〉 − η

〈
u,∇2f (x) v

〉∣∣∣∣
≥
∣∣〈u,v〉 − η 〈u,∇2f (x) v

〉∣∣− ∣∣∣∣(ηαCk + βCk
2

− 1

)
〈u,v〉

∣∣∣∣
≥
∣∣〈u,v〉 − η 〈u,∇2f (x) v

〉∣∣− ∣∣∣∣ηαCk + βCk
2

− 1

∣∣∣∣ , (C.1)

which is equivalent to result for unit-norm u and v as desired. For the general case one can

write u = ‖u‖u′ and v = ‖v‖v′ such that u′ and v′ are both unit-norm. It is straightforward

to verify that using (C.1) for u′ and v′ as the unit-norm vectors and multiplying both sides

of the resulting inequality by ‖u‖‖v‖ yields the desired general case.

Proof of Theorem 5.1. Using optimality of x(t+1) and feasibility of x one can deduce∥∥∥x(t+1) − z(t)
∥∥∥2
≤
∥∥∥x− z(t)

∥∥∥2
,

with z(t) as in line 2 of Algorithm 3. Expanding the squared norms using the inner product

of H then shows 0 ≤
〈
x(t+1) − x, 2z(t)−x(t+1) − x

〉
or equivalently

0 ≤
〈
∆(t+1), 2x(t)−2η(t)∇f

(
x + ∆(t)

)
−∆(t+1)

〉
,

where ∆(t) = x(t)−x and ∆(t+1) = x(t+1)−x. Adding and subtracting 2η(t)
〈
∆(t+1),∇f (x)

〉
and rearranging yields∥∥∥∆(t+1)

∥∥∥2
≤ 2

〈
∆(t+1),x(t)

〉
− 2η(t)

〈
∆(t+1),∇f

(
x + ∆(t)

)
−∇f (x)

〉
− 2η(t)

〈
∆(t+1),∇f (x)

〉
(C.2)

Since f is twice continuously differentiable by assumption, it follows form the mean-value

theorem that
〈
∆(t+1),∇f

(
x + ∆(t)

)
−∇f (x)

〉
=
〈
∆(t+1),∇2f

(
x + τ∆(t)

)
∆(t)

〉
, for

some τ ∈ (0, 1). Furthermore, because x, x(t), x(t+1) all belong to the model setM (Ck) we
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have supp
(
x + τ∆(t)

)
∈M

(
C2
k

)
and thereby supp

(
∆(t+1)

)
∪supp

(
x + τ∆(t)

)
∈M

(
C3
k

)
.

Invoking the
(
µC3k

, r
)

-SMRH condition of the cost function and applying Lemma C.1 with

the sparsity modelM
(
C3
k

)
, x = x + τ∆(t), and η = η(t) then yields∣∣∣〈∆(t+1),∆(t)

〉
− η(t)

〈
∆(t+1),∇f

(
x + ∆(t)

)
−∇f (x)

〉∣∣∣ ≤ γ(t)
∥∥∥∆(t+1)

∥∥∥∥∥∥∆(t)
∥∥∥.

Using the Cauchy-Schwarz inequality and the fact that
∥∥∥∇f (x)|supp(∆(t+1))

∥∥∥ ≤ ∥∥∇f (x)|I
∥∥

by the definition of I, (C.2) implies that∥∥∥∆(t+1)
∥∥∥2
≤ 2γ(t)

∥∥∥∆(t+1)
∥∥∥∥∥∥∆(t)

∥∥∥+ 2η(t)
∥∥∥∆(t+1)

∥∥∥∥∥∇f (x)|I
∥∥.

Canceling
∥∥∥∆(t+1)

∥∥∥ from both sides proves the theorem.

Lemma C.2 (Bounded Model Projection). Given an arbitrary h0 ∈ H, a positive real number

r, and a sparsity model generator Ck, a projection PCk,r (h0) can be obtained as the projection of

PCk,+∞ (h0) on to the sphere of radius r.

Proof. To simplify the notation let ĥ = PCk,r (h0) and Ŝ = supp
(
ĥ
)

. For S ⊆ [p] define

h0 (S) = arg min
h
‖h− h0‖ s.t. ‖h‖ ≤ r and supp (h) ⊆ S.

It follows from the definition of PCk,r (h0) that Ŝ ∈ arg minS∈Ck ‖h0 (S)− h0‖. Using

‖h0 (S)− h0‖2 = ‖h0 (S)− h0|S − h0|Sc‖
2= ‖h0 (S)− h0|S‖

2 + ‖h0|Sc‖
2,

we deduce that h0 (S) is the projection of h0|S onto the sphere of radius r. Therefore, we

can write h0 (S) = min {1, r/‖h0|S‖} h0|S and from that

Ŝ ∈ arg min
S∈Ck

‖min {1, r/‖h0|S‖} h0|S − h0‖2

= arg min
S∈Ck

‖min {0, r/‖h0|S‖ − 1} h0|S‖
2 + ‖h0|Sc‖

2
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= arg min
S∈Ck

(
(1− r/‖h0|S‖)

2
+ − 1

)
‖h0|S‖

2

= arg max
S∈Ck

q (S) := ‖h0|S‖
2 − (‖h0|S‖ − r)

2
+ .

Furthermore, let

S0 = supp (PCk,+∞ (h0)) = arg max
S∈Ck

‖h0|S‖. (C.3)

If
∥∥h0|S0

∥∥ ≤ r then q (S) = ‖h0|S‖ ≤ q (S0) for any S ∈ Ck and thereby Ŝ = S0. Thus, we

focus on cases that
∥∥h0|S0

∥∥ > r which implies q (S0) = 2
∥∥h0|S0

∥∥r − r2. For any S ∈ Ck if

‖h0|S‖ ≤ r we have q (S) = ‖h0|S‖
2 ≤ r2 < 2

∥∥h0|S0
∥∥r − r2 = q (S0), and if ‖h0|S‖ > r we

have q (S) = 2‖h0|S‖r − r2 ≤ 2
∥∥h0|S0

∥∥r − r2 = q (S0) where (C.3) is applied. Therefore,

we have shown that Ŝ = S0. It is then straightforward to show the desired result that

projecting PCk,+∞ (h0) onto the centered sphere of radius r yields PCk,r (h0).
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Proofs of Chapter 6

D.1 Proof of Theorem 6.1

To prove Theorem 6.1 first a series of lemmas should be established. In what follows, x?⊥is

a projection of the s-sparse vector x? onto B̂ and x? − x?⊥ is denoted by d?. Furthermore,

for t = 0, 1, 2, . . . we denote x(t) − x?⊥ by d(t) for compactness.

Lemma D.1. If x(t) denotes the estimate in the t-th iteration of `p-PGD, then∥∥∥d(t+1)
∥∥∥2

2
≤ 2<

[〈
d(t),d(t+1)

〉
− η(t)

〈
Ad(t),Ad(t+1)

〉]
+ 2η(t)<

〈
Ad(t+1),Ad? + e

〉
.

Proof. Note that x(t+1) is a projection of x(t) − η(t)AH
(
Ax(t) − y

)
onto B̂. Since x?⊥ is also

a feasible point (i.e., x?⊥ ∈ B̂) we have∥∥∥x(t+1) − x(t) + η(t)AH
(
Ax(t) − y

)∥∥∥2

2
≤
∥∥∥x?⊥ − x(t) + η(t)AH

(
Ax(t) − y

)∥∥∥2

2
.

Using (2.1) we obtain∥∥∥d(t+1) − d(t) + η(t)AH
(
A
(
d(t) − d?

)
− e
)∥∥∥2

2
≤
∥∥∥−d(t) + η(t)AH

(
A
(
d(t) − d?

)
− e
)∥∥∥2

2
.
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Therefore, we obtain

<
〈
d(t+1),d(t+1) − 2d(t) + 2η(t)AH

(
Ad(t) − (Ad? + e)

)〉
≤ 0

that yields the the desired result after straightforward algebraic manipulations.

The following lemma is a special case of the generalized shifting inequality proposed

in (Foucart, 2012, Theorem 2). Please refer to the reference for the proof.

Lemma D.2 (Shifting Inequality (Foucart, 2012)). If 0 < p < 2 and

u1 ≥ u2 ≥ · · · ≥ ul ≥ ul+1 ≥ · · · ≥ ur ≥ ur+1 ≥ · · · ≥ ur+l ≥ 0,

then for C = max

{
r

1
2
− 1

p ,
√

p
2

(
2

2−p l
) 1

2
− 1

p

}
,

(
l+r∑
i=l+1

u2
i

) 1
2

≤ C

(
r∑
i=1

upi

) 1
p

.

Lemma D.3. For x?⊥, a projection of x? onto B̂, we have supp (x?⊥) ⊆ S = supp (x?).

Proof. Proof is by contradiction. Suppose that there exists a coordinate i such that x?i = 0

but x?⊥i 6= 0. Then one can construct vector x′ which is equal to x?⊥ except at the i-th coor-

dinate where it is zero. Obviously x′ is feasible because ‖x′‖pp < ‖x?⊥‖
p
p ≤ ĉ. Furthermore,

∥∥x? − x′
∥∥2

2
=

n∑
j=1

∣∣x?j − x′j∣∣2
=

n∑
j=1
j 6=i

∣∣x?j − x?⊥j∣∣2

<
n∑
j=1

∣∣x?j − x?⊥j∣∣2
= ‖x? − x?⊥‖

2
2.
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Since by definition

x?⊥ ∈ arg min
x

1

2
‖x? − x‖22 s.t. ‖x‖pp ≤ ĉ,

we have a contradiction.

To continue, we introduce the following sets which partition the coordinates of vector

d(t) for t = 0, 1, 2, . . .. As defined previously in Lemma D.3, let S = supp (x?). Lemma D.3

shows that supp (x?⊥) ⊆ S, thus we can assume that x?⊥ is s-sparse. Let St,1 be the support

of the s largest entries of d(t)|Sc in magnitude, and define Tt = S ∪ St,1. Furthermore, let

St,2 be the support of the s largest entries of d(t)|T c
t

, St,3 be the support of the next s largest

entries of d(t)|T c
t

, and so on. We also set Tt,j = St,j ∪ St,j+1 for j ≥ 1. This partitioning of

the vector d(t) is illustrated in Fig. D.1.

Lemma D.4. For t = 0, 1, 2, . . . the vector d(t) obeys

∑
i≥2

∥∥∥d(t)|St,i
∥∥∥

2
≤
√

2p

(
2s

2− p

) 1
2
− 1

p
∥∥∥d(t)|Sc

∥∥∥
p
.

Proof. Since St,j and St,j+1 are disjoint and Tt,j = St,j ∪ St,j+1 for j ≥ 1, we have∥∥∥d(t)|St,j
∥∥∥

2
+
∥∥∥d(t)|St,j+1

∥∥∥
2
≤
√

2
∥∥∥d(t)|Tt,j

∥∥∥
2
.

Figure D.1: Partitioning of vector d(t) = x(t) − x?⊥. The color gradient represents decrease
of the magnitudes of the corresponding coordinates.
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Adding over even j’s then we deduce

∑
j≥2

∥∥∥d(t)|St,j
∥∥∥

2
≤
√

2
∑
i≥1

∥∥∥d(t)|Tt,2i
∥∥∥

2
.

Because of the structure of the sets Tt,j , Lemma D.2 can be applied to obtain

∥∥∥d(t)|Tt,j
∥∥∥

2
≤ √p

(
2s

2− p

) 1
2
− 1

p
∥∥∥d(t)|Tt,j−1

∥∥∥
p
. (D.1)

To be precise, based on Lemma D.2 the coefficient on the RHS should be

C=max

{
(2s)

1
2
− 1

p ,

√
p

2

(
2s

2− p

) 1
2
− 1

p

}
.

For simplicity, however, we use the upper bound C ≤ √p
(

2s
2−p

) 1
2
− 1

p . To verify this upper

bound it suffices to show that (2s)
1
2
− 1

p ≤ √p
(

2s
2−p

) 1
2
− 1

p or equivalently φ (p) = p log p +

(2− p) log (2− p) ≥ 0 for p ∈ (0, 1]. Since φ (·) is a deceasing function over (0, 1], it attains

its minimum at p = 1 which means that φ(p) ≥ φ(1) = 0 as desired.

Then (D.1) yields

∑
j≥2

∥∥∥d(t)|St,j
∥∥∥

2
≤
√

2p

(
2s

2− p

) 1
2
− 1

p ∑
i≥1

∥∥∥d(t)|Tt,2i−1

∥∥∥
p
.

Since ω1 + ω2 + · · ·+ ωl ≤
(
ωp1 + ωp2 + · · ·+ ωpl

) 1
p holds for ω1, · · · , ωl ≥ 0 and p ∈ (0, 1], we

can write

∑
i≥1

∥∥∥d(t)|Tt,2i−1

∥∥∥
p
≤

∑
i≥1

∥∥∥d(t)|Tt,2i−1

∥∥∥p
p

 1
p

.

The desired result then follows using the fact that the sets Tt,2i−1 are disjoint and Sc
=⋃

i≥1Tt,2i−1.

Proof of the following Lemma mostly relies on some common inequalities that have
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been used in the compressed sensing literature (see e.g., Chartrand (2007b, Theorem 2.1)

and Gribonval and Nielsen (2007, Theorem 2)) .

Lemma D.5. The error vector d(t) satisfies
∥∥d(t)|Sc

∥∥
p
≤ s

1
p
− 1

2
∥∥d(t)|S

∥∥
2

for all t = 0, 1, 2, · · · .

Proof. Since supp (x?⊥) ⊆ S = supp (x?) we have d(t)|Sc = x(t)|Sc . Furthermore, because

x(t) is a feasible point by assumption we have
∥∥x(t)

∥∥p
p
≤ ĉ = ‖x?⊥‖

p
p that implies,∥∥∥d(t)|Sc

∥∥∥p
p

=
∥∥∥x(t)|Sc

∥∥∥p
p

≤ ‖x?⊥‖
p
p −

∥∥∥x(t)|S
∥∥∥p
p

≤
∥∥∥x?⊥ − x(t)|S

∥∥∥p
p

=
∥∥∥d(t)|S

∥∥∥p
p

≤ s1− p
2

∥∥∥d(t)|S
∥∥∥p

2
, (power means inequality)

which yields the desired result.

The next lemma is a straightforward extension of a previously known result (Daven-

port and Wakin, 2010, Lemma 3.1) to the case of complex vectors and asymmetric RIP.

Lemma D.6. For u,v∈Cn suppose that matrix A satisfies RIP of order max {‖u+v‖0, ‖u−v‖0}

with constants α and β. Then we have

|< [η 〈Au,Av〉 − 〈u,v〉]| ≤
(
η (α− β)

2
+

∣∣∣∣η (α+ β)

2
− 1

∣∣∣∣) ‖u‖2‖v‖2.
Proof. If either of the vectors u and v is zero the claim becomes trivial. So without loss of

generality we assume that none of these vectors is zero. The RIP condition holds for the

vectors u± v and we have

β‖u± v‖22 ≤ ‖A (u± v)‖22 ≤ α‖u± v‖22.
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Therefore, we obtain

< 〈Au,Av〉 =
1

4

(
‖A (u + v)‖22 − ‖A (u− v)‖22

)
≤ 1

4

(
α‖u + v‖22 − β‖u− v‖22

)
=
α− β

4

(
‖u‖22 + ‖v‖22

)
+
α+ β

2
< 〈u,v〉 .

Applying this inequality for vectors u
‖u‖2

and v
‖v‖2

yields

<
[
η

〈
A

u

‖u‖2
,A

v

‖v‖2

〉
−
〈

u

‖u‖2
,

v

‖v‖2

〉]
≤ η (α− β)

2
+

(
η (α+ β)

2
− 1

)
<
〈

u

‖u‖2
,

v

‖v‖2

〉
≤ η (α− β)

2
+

∣∣∣∣η (α+ β)

2
− 1

∣∣∣∣ .
Similarly it can be shown that

<
[
η

〈
A

u

‖u‖2
,A

v

‖v‖2

〉
−
〈

u

‖u‖2
,

v

‖v‖2

〉]
≥ −η (α− β)

2
−
∣∣∣∣η (α+ β)

2
− 1

∣∣∣∣ .
The desired result follows by multiplying the last two inequalities by ‖u‖2‖v‖2.

Lemma D.7. If the step-size of `p-PGD obeys
∣∣η(t) (α3s + β3s) /2− 1

∣∣ ≤ τ for some τ ≥ 0, then

we have

<
[〈

d(t),d(t+1)
〉
− η(t)

〈
Ad(t),Ad(t+1)

〉]
≤ ((1 + τ) ρ3s + τ)

(
1 +

√
2p

(
2

2− p

) 1
2
− 1

p

)2

×
∥∥∥d(t)

∥∥∥
2

∥∥∥d(t+1)
∥∥∥

2
.

Proof. Note that

<
[〈

d(t),d(t+1)
〉
− η(t)

〈
Ad(t),Ad(t+1)

〉]
= <

[〈
d(t)|Tt ,d(t+1)|Tt+1

〉
− η(t)

〈
Ad(t)|Tt ,Ad(t+1)|Tt+1

〉]
+
∑
i≥2

<
[〈

d(t)|St,i ,d(t+1)|Tt+1

〉
− η(t)

〈
Ad(t)|St,i ,Ad(t+1)|Tt+1

〉]
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+
∑
j≥2

<
[〈

d(t)|Tt ,d(t+1)|St+1,j

〉
− η(t)

〈
Ad(t)|Tt ,Ad(t+1)|St+1,j

〉]
+
∑
i,j≥2

<
[〈

d(t)|St,i ,d(t+1)|St+1,j

〉
− η(t)

〈
Ad(t)|St,i ,Ad(t+1)|St+1,j

〉]
. (D.2)

Note that |Tt ∪ Tt+1| ≤ 3s. Furthermore, for i, j≥2 we have |Tt ∪ St+1,j |≤3s, |Tt+1 ∪ St,i|≤

3s, and |St,i ∪ St+1,j | ≤ 2s. Therefore, by applying Lemma D.6 for each of the summands

in (D.2) and using the fact that

ρ′3s := (1 + τ) ρ3s + τ

≥ η(t) (α3s − β3s) /2 +
∣∣∣η(t) (α3s + β3s) /2− 1

∣∣∣
we obtain

<
[〈

d(t),d(t+1)
〉
− η(t)

〈
Ad(t),Ad(t+1)

〉]
≤ ρ′3s

∥∥∥d(t)|Tt
∥∥∥

2

∥∥∥d(t+1)|Tt+1

∥∥∥
2

+
∑
i≥2

ρ′3s

∥∥∥d(t)|St,i
∥∥∥

2

∥∥∥d(t+1)|Tt+1

∥∥∥
2

+
∑
j≥2

ρ′3s

∥∥∥d(t)|Tt
∥∥∥

2

∥∥∥d(t+1)|St+1,j

∥∥∥
2

+
∑
i,j≥2

ρ′3s

∥∥∥d(t)|St,i
∥∥∥

2

∥∥∥d(t+1)|St+1,j

∥∥∥
2
.

Hence, applying Lemma D.4 yields

<
[〈

d(t),d(t+1)
〉
− η(t)

〈
Ad(t),Ad(t+1)

〉]
≤ ρ′3s

∥∥∥d(t)|Tt
∥∥∥

2

∥∥∥d(t+1)|Tt+1

∥∥∥
2

+
√

2p

(
2s

2− p

) 1
2
− 1

p

ρ′3s

∥∥∥d(t)|Sc
∥∥∥
p

∥∥∥d(t+1)|Tt+1

∥∥∥
2

+
√

2p

(
2s

2− p

) 1
2
− 1

p

ρ′3s

∥∥∥d(t)|Tt
∥∥∥

2

∥∥∥d(t+1)|Sc
∥∥∥
p

+ 2p

(
2s

2− p

)1− 2
p

ρ′3s

∥∥∥d(t)|Sc
∥∥∥
p

∥∥∥d(t+1)|Sc
∥∥∥
p
.
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Then it follows from Lemma D.5,

<
[〈

d(t),d(t+1)
〉
− η(t)

〈
Ad(t),Ad(t+1)

〉]
≤ ρ′3s

∥∥∥d(t)|Tt
∥∥∥

2

∥∥∥d(t+1)|Tt+1

∥∥∥
2

+
√

2p

(
2

2− p

) 1
2
− 1

p

ρ′3s

∥∥∥d(t)|S
∥∥∥

2

∥∥∥d(t+1)|Tt+1

∥∥∥
2

+
√

2p

(
2

2− p

) 1
2
− 1

p

ρ′3s

∥∥∥d(t)|Tt
∥∥∥

2

∥∥∥d(t+1)|S
∥∥∥

2

+ 2p

(
2

2− p

)1− 2
p

ρ′3s

∥∥∥d(t)|S
∥∥∥

2

∥∥∥d(t+1)|S
∥∥∥

2

≤ ρ′3s

(
1 +

√
2p

(
2

2− p

) 1
2
− 1

p

)2 ∥∥∥d(t)
∥∥∥

2

∥∥∥d(t+1)
∥∥∥

2
,

which is the desired result.

Now we are ready to prove the accuracy guarantees for the `p-PGD algorithm.

Proof of Theorem 6.1. Recall that γ is defined by (6.5). It follows from Lemmas D.1 and

D.7 that ∥∥∥d(t)
∥∥∥2

2
≤ 2γ

∥∥∥d(t)
∥∥∥

2

∥∥∥d(t−1)
∥∥∥

2
+ 2η(t)<

〈
Ad

(t)
,Ad? + e

〉
≤ 2γ

∥∥∥d(t)
∥∥∥

2

∥∥∥d(t−1)
∥∥∥

2
+ 2η(t)

∥∥∥Ad(t)
∥∥∥

2
‖Ad? + e‖2.

Furthermore, using (D.1) and Lemma D.5 we deduce∥∥∥Ad(t)
∥∥∥

2
≤
∥∥∥Ad(t)|Tt

∥∥∥
2

+
∑
i≥1

∥∥∥Ad(t)|Tt,2i
∥∥∥

2

≤
√
α2s

∥∥∥d(t)|Tt
∥∥∥

2
+
∑
i≥1

√
α2s

∥∥∥d(t)|Tt,2i
∥∥∥

2

≤
√
α2s

∥∥∥d(t)|Tt
∥∥∥

2
+
√
α2s
√
p

(
2s

2− p

) 1
2
− 1

p ∑
i≥1

∥∥∥d(t)|Tt,2i−1

∥∥∥
p

≤
√
α2s

∥∥∥d(t)|Tt
∥∥∥

2
+
√
α2s
√
p

(
2s

2− p

) 1
2
− 1

p
∥∥∥d(t)|Sc

∥∥∥
p
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≤
√
α2s

∥∥∥d(t)|Tt
∥∥∥

2
+
√
α2s
√
p

(
2

2− p

) 1
2
− 1

p
∥∥∥d(t)|S

∥∥∥
2

≤
√
α2s

(
1 +
√
p

(
2

2− p

) 1
2
− 1

p

)∥∥∥d(t)
∥∥∥

2
.

Therefore,∥∥∥d(t)
∥∥∥2

2
≤ 2γ

∥∥∥d(t)
∥∥∥

2

∥∥∥d(t−1)
∥∥∥

2
+ 2η(t)√α2s

(
1 +
√
p

(
2

2− p

) 1
2
− 1

p

)∥∥∥d(t)
∥∥∥

2
‖Ad? + e‖2,

which after canceling
∥∥d(t)

∥∥
2

yields

∥∥∥d(t)
∥∥∥

2
≤ 2γ

∥∥∥d(t−1)
∥∥∥

2
+ 2η(t)√α2s

(
1 +
√
p

(
2

2− p

) 1
2
− 1

p

)
‖Ad? + e‖2

= 2γ
∥∥∥d(t−1)

∥∥∥
2

+ 2η(t) (α3s + β3s)

√
α2s

α3s + β3s

(
1 +
√
p

(
2

2− p

) 1
2
− 1

p

)
‖Ad? + e‖2

≤ 2γ
∥∥∥d(t−1)

∥∥∥
2

+ 4 (1 + τ)

√
α2s

α3s + β3s

(
1 +
√
p

(
2

2− p

) 1
2
− 1

p

)
(‖Ad?‖2 + ‖e‖2) .

Since x?⊥ is a projection of x? onto the feasible set B̂ and
(

ĉ
‖x?‖pp

)1/p
x? ∈ B̂ we have

‖d?‖2 = ‖x?⊥ − x?‖2

≤

∥∥∥∥∥∥
(

ĉ

‖x?‖pp

)1/p

x? − x?

∥∥∥∥∥∥
2

= ε‖x?‖2.

Furthermore, supp (d?) ⊆ S, thereby we can use RIP to obtain

‖Ad?‖2 ≤
√
αs‖d?‖2

≤ ε
√
αs‖x?‖2.

Hence,∥∥∥d(t)
∥∥∥

2
≤ 2γ

∥∥∥d(t−1)
∥∥∥

2
+ 4 (1 + τ)

√
α2s

α3s + β3s

(
1 +
√
p

(
2

2− p

) 1
2
− 1

p

)
(ε
√
αs‖x?‖2 + ‖e‖2)
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≤ 2γ
∥∥∥d(t−1)

∥∥∥
2

+ 2 (1 + τ)

(
1 +
√
p

(
2

2− p

) 1
2
− 1

p

)(
ε (1 + ρ3s) ‖x?‖2 +

2
√
α2s

α3s + β3s
‖e‖2

)
.

Applying this inequality recursively and using the fact that

t−1∑
i=0

(2γ)i <

∞∑
i=0

(2γ)i =
1

1− 2γ
,

which holds because of the assumption γ < 1
2 , we can finally deduce∥∥∥x(t) − x?

∥∥∥
2

=
∥∥∥d(t) − d?

∥∥∥
2

≤
∥∥∥d(t)

∥∥∥
2

+ ‖d?‖2

≤ (2γ)t ‖x?⊥‖2 +
2 (1 + τ)

1− 2γ
(1 + ξ (p))

(
ε (1 + ρ3s) ‖x?‖2 +

2
√
α2s

α3s + β3s
‖e‖2

)
+ ‖d?‖2

≤ (2γ)t ‖x?‖2 +
2 (1 + τ)

1− 2γ
(1 + ξ (p))

(
ε (1 + ρ3s) ‖x?‖2 +

2
√
α2s

α3s + β3s
‖e‖2

)
+ ε‖x?‖2,

where ξ (p) =
√
p
(

2
2−p

) 1
2
− 1

p as defined in the statement of the theorem.

D.2 Lemmas for Characterization of a Projection onto `p-balls

In what follows we assume that B is an `p-ball with p-radius c (i.e., B = Fp (c)). For x ∈ Cn

we derive some properties of

x⊥ ∈ arg min
1

2
‖x− u‖22 s.t. u ∈ B, (D.3)

a projection of x onto B.

Lemma D.8. Let x⊥ be a projection of x onto B. Then for every i ∈ {1, 2, . . . , n} we have
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Arg (xi) = Arg
(
x⊥i
)

and
∣∣x⊥i ∣∣ ≤ |xi|.

Proof. Proof by contradiction. Suppose that for some i we have Arg (xi) 6= Arg
(
x⊥i
)

or∣∣x⊥i ∣∣ > |xi|. Consider the vector x′ for which x′j = x⊥j for j 6= i and

x′i = min
{
|xi| ,

∣∣∣x⊥i ∣∣∣} exp (ıArg (xi)) ,

where the character ı denotes the imaginary unit
√
−1. We have ‖x′‖p ≤

∥∥x⊥∥∥
p

which

implies that x′ ∈ B. Since |xi − x′i| <
∣∣xi − x⊥i ∣∣ we have ‖x′ − x‖2 <

∥∥x⊥ − x
∥∥

2
which

contradicts the choice of x⊥ as a projection.

Assumption. Lemma D.8 asserts that the projection x⊥ has the same phase components as x.

Therefore, without loss of generality and for simplicity in the following lemmas we assume x has

real-valued non-negative entries.

Lemma D.9. For any x in the positive orthant there is a projection x⊥ of x onto the set B such

that for i, j ∈ {1, 2, . . . , n} we have x⊥i ≤ x⊥j iff xi ≤ xj .

Proof. Note that the set B is closed under any permutation of coordinates. In particular,

by interchanging the i-th and j-th entries of x⊥ we obtain another vector x′ in B. Since

x⊥ is a projection of x onto B we must have
∥∥x− x⊥

∥∥2

2
≤ ‖x− x′‖22. Therefore, we have(

xi − x⊥i
)2

+
(
xj − x⊥j

)2
≤
(
xi − x⊥j

)2
+
(
xj − x⊥i

)2 and from that 0 ≤ (xi − xj)
(
x⊥i −x⊥j

)
.

For xi 6= xj the result follows immediately, and for xi = xj without loss of generality we

can assume x⊥i ≤ x⊥j .

Lemma D.10. Let S⊥ be the support set of x⊥. Then there exists a λ ≥ 0 such that

x
⊥(1−p)
i

(
xi − x⊥i

)
= pλ

for all i ∈ S⊥.
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Proof. The fact that x⊥ is a solution to the minimization expressed in (D.3) implies that

that x⊥|S⊥ must be a solution to

arg min
v

1

2
‖x|S⊥ − v‖22 s.t. ‖v‖pp ≤ c.

The normal to the feasible set (i.e., the gradient of the constraint function) is uniquely

defined at x⊥|S⊥ since all of its entries are positive by assumption. Consequently, the La-

grangian

L (v, λ) =
1

2
‖x|S⊥ − v‖22+ λ

(
‖v‖pp − c

)
has a well-defined partial derivative ∂L

∂v at x⊥|S⊥ which must be equal to zero for an ap-

propriate λ ≥ 0. Hence,

∀i ∈ S⊥ x⊥i − xi + pλx
⊥(p−1)
i = 0

which is equivalent to the desired result.

Lemma D.11. Let λ ≥ 0 and p ∈ [0, 1] be fixed numbers and set T0 = (2−p)
(
p (1−p)p−1 λ

) 1
2−p .

Denote the function t1−p (T − t) by hp (t). The following statements hold regarding the roots of

hp (t) = pλ:

(i) For p = 1 and T ≥ T0 the equation h1 (t) = λ has a unique solution at t = T − λ ∈

[0, T ] which is an increasing function of T .

(ii) For p ∈ [0, 1) and T ≥ T0 the equation hp (t) = pλ has two roots t− and t+ satisfying

t− ∈
(

0, 1−p
2−pT

]
and t+ ∈

[
1−p
2−pT,+∞

)
. As a function of T , t− and t+ are decreasing

and increasing, respectively and they coincide at T = T0.

Proof. Fig. D.2 illustrates hp (t) for different values of p ∈ [0, 1]. To verify part (i) observe

that we have T0 = λ thereby T ≥ λ. The claim is then obvious since h1 (t)−λ = T − t−λ is
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zero at t = T −λ. Part (ii) is more intricate and we divide it into two cases: p = 0 and p 6= 0.

At p = 0 we have T0 = 0 and h0 (t) = t (T − t) has two zeros at t− = 0 and t+ = T that

obviously satisfy the claim. So we can now focus on the case p ∈ (0, 1). It is straightforward

to verify that tmax = 1−p
2−pT is the location at which hp (t) peaks. Straightforward algebraic

manipulations also show that T > T0 is equivalent to pλ < hp (tmax). Furthermore, inspect-

ing the sign of h′p (t) shows that hp (t) is strictly increasing over [0, tmax] while it is strictly

decreasing over [tmax, T ]. Then, using the fact that hp (0) = hp (T ) = 0 ≤ pλ < hp (tmax), it

follows from the intermediate value theorem that hp (t) = pλ has exactly two roots, t− and

t+, that straddle tmax as claimed. Furthermore, taking the derivative of t1−p− (T − t−) = pλ

with respect to T yields

(1− p) t′−t
−p
− (T − t−) + t1−p−

(
1− t′−

)
= 0.

Hence,

((1− p) (T − t−)− t−) t′− = −t−

which because t− ≤ tmax = 1−p
2−pT implies that t′− < 0. Thus t− is a decreasing function of T .

Similarly we can show that t+ is an increasing function of T using the fact that t+ ≥ tmax.

Finally, as T decreases to T0 the peak value hp (tmax) decreases to pλ which implies that t−

and t+ both tend to the same value of 1−p
2−pT0.

Lemma D.12. Suppose that xi = xj > 0 for some i 6= j. If x⊥i = x⊥j > 0 then x⊥i ≥
1−p
2−pxi .

Proof. For p ∈ {0, 1} the claim is obvious since at p = 0 we have x⊥i = xi >
1
2xi and at p = 1

we have 1−p
2−pxi = 0. Therefore, without loss of generality we assume p ∈ (0, 1). The proof

is by contradiction. Suppose that w =
x⊥i
xi

=
x⊥j
xj

< 1−p
2−p . Since x⊥ is a projection it follows
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Figure D.2: The function t1−p (T − t) for different values of p

that a = b = w must be the solution to

arg min
a,b

ψ =
1

2

[
(1− a)2 + (1− b)2

]
s.t. ap + bp = 2wp, a > 0, and b > 0,

otherwise the vector x′ that is identical to x⊥ except for x′i = axi 6= x⊥i and x′j = bxj 6= x⊥i

is also a feasible point (i.e., x′ ∈ B) that satisfies

∥∥x′ − x
∥∥2

2
−
∥∥∥x⊥ − x

∥∥∥2

2
= (1− a)2 x2

i + (1− b)2 x2
j − (1− w)2 x2

i − (1− w)2 x2
j

=
(

(1− a)2 + (1− b)2 − 2 (1− w)2
)
x2
i < 0,

which is absurd. If b is considered as a function of a then ψ can be seen merely as a function

of a, i.e., ψ ≡ ψ (a). Taking the derivative of ψ with respect to a yields

ψ′ (a) = a− 1 + b′ (b− 1)
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= a− 1−
(a
b

)p−1
(b− 1)

=
(
b1−p (1− b)− a1−p (1− a)

)
ap−1

= (2− p) (b− a)ν−p
(

1− p
2− p

− ν
)
,

where the last equation holds by the mean value theorem for some ν ∈(min{a, b},max{a, b}).

Since w < 1−p
2−p we have r1 := min

{
21/pw, 1−p

2−p

}
> w and r0 := (2wp − rp1)

1/p
< w. With

straightforward algebra one can show that if either a or b belongs to the interval [r0, r1],

then so does the other one. By varying a in [r0, r1] we always have ν < r1 ≤ 1−p
2−p , therefore

as a increases in this interval the sign of ψ′ changes at a = w from positive to negative.

Thus, a = b = w is a local maximum of ψ which is a contradiction.
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